

C18, C18-WP, HFC18-16, HFC18-30, RP-AQUA, C8, PFP, Phenyl, HILIC-Amide and 2-EP

HPLC column

SunShell

Core Shell Particle

ChromaNik Technologies Inc.

The next generation to Core Shell particle

Features of SunShell

*1.6 μm of core and 0.5 μm of superficially porous silica layer *Same efficiency and high throughput as a Sub 2µm particle *Same pressure as a 3 μ m particle (less than a half then a sub 2 μ m particle) *Same chemistry as Sunniest technology (reference figure 1) *Good peak shape for all compounds such as basic, acidic and chelating compounds *High stability (pH range for SunShell C18, 1.5 to 10) * Low breeding 0.5 μm ↕ 0.5 μm 2.6 μm Cor 1.6 μm re 2.6 µm orous silica Schematic diagram of a core shell silica particle Van Deemter Equation $H = Ad_p + B\frac{D_m}{u} + C\frac{d_p^2}{D_m}u$ A term : Eddy diffusion(dp is particle diameter) B term : Longitudinal diffusion (Dm is diffusion coefficient) C term : Mass transfer Van Deemter plot Н tèrm C term <u>A term</u> и 45 Sunniest C18-HT 2.0 um 40 Brand A C18 1.9 um 35 30 Brand B C18 1.8 um 25 pressure, Brand C C18 1.7 um 20 Brand D C18 2.6 um 15 SunShell C18 2.6 um 10 Column dimension: 50 x 2.1 mm 5 Mobile phase: Acetonitrile/water=(70/30) Temperature: 25 °C 0 0.5 1.5 0 1 Flow rate, mL/min Comparison of back pressure for high throughput columns

SunShell C18 shows same efficiency as a sub 2 μm C18. In comparison between fully porous 2.6 μm and core shell 2.6 μm (SunShell), SunShell shows lower values for A term, B term and C term of Van Deemter equation. The core shell structure leads higher performance to compare with the fully porous structure.

Furthermore back pressure of SunShell C18 is less than a half to compare with sub-2 μm C18s.

Why does a 2.6 μ m core shell particle show the same performance as a sub 2 μ m particle?

Comparison of Performance by Plate/Pressure

Under a constant back pressure condition, SunShell C18 showed more than 2 times higher performance to compare with totally sub-2µm porous C18s.

SunShell C18

Characteristics of SunShell C18

	Core shell silica					C18					
	Particle size	Pore diameter	Specific surface area	Carbon content	Bonded phase	USP L#	End-capping	Maximum operating pressure	Available pH range		
SunShell C18	2.6 µM	9 nm	150 m²/g	7 %	C18	L1	Sunniest End-capping	60 MPa or 8,570 psi	1.5 - 10		

Comparison of standard samples between core shell C18s

Retention of standard samples and back pressure were compared for five kinds of core shell type C18s. Company A C18 showed only a half retention to compare with SunShell C18. Steric selectivity becomes large when ligand density on the surface is high. SunShell C18 has the largest steric selectivity so that it has the highest ligand density. This leads the longest retention time.

Comparison of pyridine

Residual silanol groups make pyridine be tailing under methanol/water mobile phase condition. SunShell C18 shows a sharp peak for pyridine.

Comparison of Oxine

8-Quinolinol (Oxine) is a metal chelating compound. Metal impurities in the core shell particle leads the tailing for oxine peak.

Comparison of formic acid

Formic acid is used as an indicator for a acidic inertness. SunShell and Company A and C C18 show a sharp peak.

Loading capacity of amitriptyline as a basic compound

Amitriptyline overlords much more at acetonitrile/buffer mobile phase than methanol/buffer. Three kinds of core shell C18s were compared loading capacity of amitriptyline at three different mobile phases.

ChromaNik Technologies Inc

Common condition: Column dimension, 150 x 4.6 mm, flow rate; 1.0 mL/min, temperature; 40 °C

All columns are core shell type. All columns sized 150 x 4.6 mm show 38,000 to 40,000 plates for a neutral compound. However regarding a basic compound like amitriptyline, SunShell C18 and company C C18 showed a good peak, while Company A, B and D C18 showed a poor peak. Company A C18 overloaded at more than 0.01 µg of amitriptyline while SunShell C18 overloaded at more than from 0.3 to 1 µg of amitriptyline. Surprisingly loading capacity of company A C18 was only one hundredth to compare with SunShell C18 under acetonitrile/20mM phosphate buffer pH7.0=(60:40) mobile phase. Company D C18 always showed poor peak of amitriptyline.

ChromaNik Technologies Inc

Evaluation of Stability

Mobile phase: $CH_3CN/H_2O=60/4$ Flow rate: 0.4 mL/min Temperature: 40 °C Sample: 1 = Uracil (t₀) 2 = Butylbenzene

Stability under acidic pH condition was evaluated at 80 °C using acetonitrile/1% trifluoroacetic acid solution (10:90) as mobile phase. 100% aqueous mobile phase expels from the pore of packing materials by capillarity and packing materials doesn't deteriorate. 10% acetonitrile in a mobile phase allows an accurate evaluation.¹⁻³⁾

★Sunshell C18 has kept 90% retention for 100 hours under such a severe condition. SunShell C18 is 5 to 10 times more stable than the other core shell C18.

1) N. Nagae, T. Enami and S. Doshi, LC/GC North America October 2002.

2) T. Enami and N. Nagae, American Laboratory October 2004. 3) T. Enami and N. Nagae, BUNSEKI KAGAKU, 53 (2004) 1309.

Comparison column

1. Kinetex C18, 2.6 μm 2. Accucore C18, 2.6 μm

. Accucore C18, 2.6 μm

3. PoroShell C18 EC, 2.7 μm 4. Ascentis Express C18, 2.7 μm

5. SunShell C18, 2.6 μm

Durable test condition

Column Size: 50 x 2.1 mm Mobile phase: CH₃OH/20mM Sodium borate/10mM NaOH=30/21/49 (pH10) Flow rate: 0.4 mL/min Temperature: 50 °C

Measurement condition

Column Size: $50 \times 2.1 \text{ mm}$ Mobile phase: $CH_3CN/H_2O=60/40$ Flow rate: 0.4 mL/minTemperature: $40 \text{ }^\circ\text{C}$ Sample: 1 = Butylbenzene

Stability under basic pH condition was evaluated at 50 °C using methanol/Sodium borate buffer pH 10 (30:70) as mobile phase. Sodium borate is used as a alkaline standard solution for pH meter, so that its buffer capacity is high.

Elevated temperature of 10 °C makes column life be one third. The other company shows stability test at ambient (room temperature). If room temperature is 25 °C, column life at room temperature (25 °C) is sixteen times longer than that at 50 °C.

★ SunShell C18 is enough stable even if it is used under pH 10 condition. Regarding stability under basic pH condition, there is little C18 column like SunShell C18 except for hybrid type C18. It is considered that our end-capping technique leads high stability.

★ SunShell C18 can be used at the pH range from 1.5 to 10.

ChromaNik Technologies Inc.

Efficiency of SunShell C18

Examples of transfer from a conventional 5 µm column to SunShell column

Comparison between normal and semi-micro HPLC

SunShell C18-WP, RP-AQUA, C8, Phenyl, PFP

(Pentafluoropheny)

a) Under 100% aqueous condition

ChromaNik Technologies Inc.

Characteristics of SunShell

	0	Core shell	silica						
	Particle size	Pore diameter	Specific surface area	Carbon content	Bonded phase	USP L#	End-capping	Maximum operating pressure	Available pH range
SunShell C18	2.6 µM	9nm	150 m²/g	7%	C18	L1	Sunniest endcapping	60 MPa	1.5 - 10
SunShell C18-WP	2.6 µM	16 nm	90 m²/g	5%	C18	L1	Sunniest endcapping	60 MPa	1.5 - 10
SunShell RP-AQUA	2.6 μm	16 nm	90 m²/g	4%	C28	L62	Sunniest endcapping	60 MPa	2 - 8 ^{a)}
SunShell C8	2.6 μm	9nm	150 m²/g	4.5%	C8	L7	Sunniest endcapping	60 MPa	1.5 - 9
SunShell Phenyl	2.6 μm	9nm	150 m²/g	5%	Phenylhexyl	L11	Sunniest endcapping	60 MPa	1.5 - 9
SunShell PFP	2.6 μm	9nm	150 m²/g	4.5%	Pentafluorophenyl	L43	TMS endcapping	60 MPa	2 - 8

Comparison of standard samples

Column: SunShell 150 x 4.6 Mobile phase: CH Flow rate: 1.0 mL/ Temperature: 40 ° Sample: 1 = Uracil 2 = Caffei 3 = Pheno 4 = Butylk 5 = o-Terp 6 = Amylk 7 = Triphe	C18, C18-WP, RP-4 5 mm ,OH/H ₂ O=75/25 min C ne ol penzene ohenyl penzene enylene	AQUA, C8, Phenyl, PFP, 2	6 μm
	Hydrogen bonding (Caffeine/Phenol)	Hydrophobicity (Amylbenzene/Butylbenzene)	Steric selectivit (Triphenylene/o-Terphe
PFP	1.00	1.31	2.38
Phenyl	1.00	1.48	1.01
C8	0.32	1.46	1.08
RP-AQUA	0.52	1.52	1.30
C18-WP	0.40	1.55	1.35
SunShell C18	0.39	1.60	1.46

Separation of peptides

Sample: Tryptic digest of BSA

Separation of amitriptyline using C8

SunShell C8

0

1

Mobile phase:

Flow rate: 1.0 mL/min

Detection: UV@250nm

Temperature: 40 °C

Separation of basic compounds

Sample: 1 = Uracil, 2 = Propranolol,

2

3

Retention time/min

4

Separation of xanthines

Separation of cresol isomers

3 = 5'-ADP 4 = 5'-AMP

Separation of nucleic acid bases

	Plate(5)	Resolution (4,5)
Sunniest	14,000	1.98
SunShell	30,000	3.79

High-throughput separation

A peak width is just one second!!

SunShell HFC18-16, HFC18-30

For separation of peptides and proteins

ChromaNik Technologies Inc

Characteristics of SunShell HFC18

Core shell silica					C18 (USP L# 1)						
	Particl e size	Pore diameter	Specific surface area	Carbon content	Ligand density	End-capping	Maximum operating pressure	Available pH range			
SunShell C18-WP	2.6 µM	16 nm	90 m²/g	5 %	2.5 µmol/m2	Sunniest endcapping	60 MPa or 8,570 psi	1.5 - 10			
SunShell HFC18-16	2.6 µM	16 nm	90 m²/g	2.5%	1.2 µmol/m2	Sunniest endcapping	60 MPa or 8,570 psi	1.5 – 9			
SunShell HFC18-30	2.6 µM	30 nm	40 m²/g	1.3%	1.2 μmol/m2	Sunniest endcapping	60 MPa ^a or 8,570 psi ^a	1.5 - 9			

Separation of peptides

Column: SunShell HFC18-16, 2.6 µm (16 nm) 150 x 4.6 mm, SunShell C18-WP, 2.6 µm (16 nm) 150 x 4.6 mm Mobile phase: A) 0.1% TFA in Acetonitrile/water(10:90) B) 0.1 % TFA in Acetonitrile Gradient program: Time 0 min 5 min 40 min %В 5% 50% 5% Flow rate: 1.0 mL/min Temperature: 25 °C Detection: UV@210 nm Sample: Tryptic digest of cytochrome C

For Supercritical fluid Chromatography

2.6 μ m core shell column shows only one third of back pressure to compare with 1.7 μ m fully porous column although both show almost same efficiency. By such low back pressure, a difference of density of supercritical fluid between an inlet and an outlet of the column is reduced. Consequently, . 2.6 μ m core shell column performs a superior separation for SFC.

Characteristics of SunShell 2-EP

	Core shell silica					-	_	
	Particle size	Pore diameter	Specific surface area	Carbon content	Bonded phase	End- capping	Maximum operating pressure	Available pH range
SunShell 2-EP	2.6 µM	9 nm	150 m²/g	2.5%	2-Ethylpyridine	no	60 MPa or 8,570 psi	2 - 7.5

Comparison between SunShell 2-EP and 1.7 µm fully porous 2-EP

Figure 1: Chromatogram of the separation for he 17component mix using the Sun Shell 2-EP 150 x 3.0 mm column. A methanol gradient of < 2 minutes was used on the Agilent 1260 Infinity SFC system. SFC conditions: flow rate: 4.0mL/min; outlet pressure 160 bar; column temperature 55°C. Gradient program: 5.0-7.5% in 0.20 min, then 7.5-20% in 1.3 min and held at 20% for 0.2 min.

Figure 2: Chromatogram of the separation for the 17component mix using Acquity UPC² Viridis 2-EP 100 x 3.0 mm column. 16 of the 17 components were resolved. A methanol gradient of < 2 minutes was used on the Agilent 1260 Infinity SFC system. SFC conditions: flow rate 3.5 mL/min; outlet pressure 160 bar; and column temperature 70^oC. Gradient program: 5.0-12.5% in 1.0 min, 12.5% for 0.25 min, then 12.5-20% in 0.75 min.

Courtesy of Pfizer Inc.

SunShell HILIC-Amide

For Hydrophilic Interaction Chromatography

Characteristics of SunShell HILIC-Amide

റ

		Core shell sil	ica	Amide (USP L# 68)						
	Particle size	Pore diameter	Specific surface area	Carbon content	Bonded phase	End-capping	Maximum operating pressure	Available pH range		
SunShell HILIC-Amide	2.6 µM	9 nm	150 m²/g	3%	Amide	no	60 MPa or 8,570 psi	2 - 8		
Stationary p			,							

Stationary phase of SunShell HILIC-Amide consists of AMIDE and HYDROPHILIC GROUP, so that this stationary phase is more polar than an individual group. High speed separation is leaded by core shell structure that derives high efficiency and fast equilibration.

Separation of Nucleic acid bases: Comparison of the other core shell hilic columns

R: Hydrophilic group

Detection: UV@220 nm,

Sample: 1 = Cyanuric acid, 2 = Melamine

Sample: 1 = Nicotinic acid, 2 = Ascorbic acid, 3 = Pyridoxine

Price of SunShell RP Guard Filter

Name	quantity	Part number	Photo
SunShell RP Guard Filter For exchange	5 pieces	CBGAAC	
SunShell RP Guard Filter Holder	1 piece	CBGAAH	

*Distributor **Biotech AB** dichrom Labquip Bujino Chemicals Watrex Praha, s.r.o. Beijing Tai-Ke-Mei Hi-Tech Co., Ltd. SiliCycle, Inc. Obrnuta faza j.d.o.o. **Kinesis** LabService Analytica S.r. Moricon **BGB** Analytik AG Innovations United BGB Analytik France S.A.S. Imptech Scientific Yair Technologies Ltd IT Technologies Pte Ltd Nacalai ÚSA, Inc. 3 I-Tek

Chromatopak

Analytical

Prochrome India

Instruments

Ordering information of SunShell 2.6 μm

	Inner diameter (mm)	1.0	2.1	3.0	4.6	USP category	
	Length (mm)	Catalog number	Catalog number	Catalog number	Catalog number		
	30		CB6931	CB6331	CB6431		
	50	CB6141	CB6941	CB6341	CB6441		
SunShell C18	75		CB6951	CB6351	CB6451	L1	
	100	CB6161	CB6961	CB6361	CB6461		
	150	CB6171	CB6971	CB6371	CB6471		
	30		CC6931	CC6331	CC6431		
	50		CC6941	CC6341	CC6441		
SunShell C8	75		CC6951	CC6351	CC6451	L7	
	100		CC6961	CC6361	CC6461	L7	
	150		CC6971	CC6371	CC6471		
	30		CF6931	CF6331	CF6431		
	50		CF6941	CF6341	CF6441		
SunShell PFP	75		CF6951	CF6351	CF6451	L43	
	100		CF6961	CF6361	CF6461		
	150		CF6971	CF6371	CF6471		
	30		CW6931	CW6331	CW6431		
	50		CW6941	CW6341	CW6441	L1	
SunShell C18-WP	75		CW6951	CW6351	CW6451		
	100		CW6961	CW6361	CW6461		
	150		CW6971	CW6371	CW6471	1	
	30		CR6931	CR6331	CR6431		
	50	CR6141	CR6941	CR6341	CR6441		
SunShell RP-AQUA	75		CR6951	CR6351	CR6451	L62	
	100	CR6161	CR6961	CR6361	CR6461		
	150	CR6171	CR6971	CR6371	CR6471		
	30		CP6931	CP6331	CP6431		
	50		CP6941	CP6341	CP6441		
SunShell Phenyl	75		CP6951	CP6351	CP6451	111	
Callenen Henry	100		CP6961	CP6361	CP6461		
	150		CP6971	CP6371	CP6471		
	30		CH6931	CH6331	CH6431		
	50		CH6941	CH6341	CH6441		
SunShell HILIC-Amide	75		CH6951	CH6351	CH6451	168	
	100		CH6961	CH6361	CH6461		
	150		CH6971	CH6371	CH6471		
	30		CF6931	CE6331	CF6431		
	50		CE6941	CE6341	CE6441		
SunShell 2-FP	75		CE6951	CE6351	CE6451		
	100		CE6961	CE6361	CE6461		
	150		CE6971	CE6371	CE6471		
	50		CG6941	CG6341	CG6441		
SunShell HFC18-16	100		CG6961	CG6361	CG6461	L1	
	150		CG6971	CG6371	CG6471		
	50		C46941	C46341	C46441		
SunShell HFC18-30	100		C46961	C46361	C46461	L1	
	150		C46971	C46371	C46471	_	

Manufacturer ChromaNik Technologies Inc.

6-3-1 Namiyoke, Minato-ku, Osaka, 552-0001 Japan TEL: +81-6-6581-0885 FAX: +81-6-6581-0890 E-mail: info@chromanik.co.jp URL: http://chromanik.co.jp