User’s Guide

Separation of chiral compounds on
Chiral-AGP • Chiral-CBH • Chiral-HSA

Second Edition
Contents

The CHIRAL-AGP column 3
The CHIRAL-CBH column 3
The CHIRAL-HSA column 3

Column Selection Guide 3
Method Development 4
Substance Index 7
Applications 11
Reference list CHIRAL-AGP 28
Reference list CHIRAL-CBH 34
Reference list CHIRAL-HSA 35

Chiral Column Price List 35
The CHIRAL-AGP column

α_1-acid glycoprotein (AGP) is a very stable protein, which tolerates pure organic solvents, high temperatures and high and low pH. AGP is the chiral selector in the CHIRAL-AGP column. The selector has been immobilized on spherical 5 µm particles. The column is used in the reversed-phase mode. The CHIRAL-AGP column can be used for the resolution of an extremely broad range of chiral compounds, such as amines (primary, secondary, tertiary and quaternary ammonium), acids, esters, sulphoxides, amides, alcohols etc. The very broad applicability is demonstrated in the application section below and in the list of publications in the last part of the guide. In the applications you can find chromatograms together with the chromatographic conditions.

The enantioselectivity and the retention can easily be regulated by the pH of the mobile phase, the buffer concentration and the nature and the concentration of the organic modifier.

Stability of the CHIRAL-AGP column

The stability of the AGP column has been tested using bumadizon, an acidic drug, as test compound. In total 30.5 liters of mobile phase (10% isopropanol in phosph. buffer pH 6.0) was pumped through the column. During the test 2030 samples of bumadizon were injected. One of the chromatograms below is the starting chromatogram and the other one is the last chromatogram obtained in the test. No significant changes were observed.

The CHIRAL-CBH column

Cellulbiohydrolase(CBH) is the chiral selector in the CHIRAL-CBH column. CBH is a very stable enzyme, which has been immobilized onto spherical 5 µm silica particles. The column is used in the reversed-phase mode. The column is preferably used for the separation of enantiomers of basic drugs from many compound classes. The retention and the enantioselectivity can be regulated by changes in pH, buffer concentration and the nature and the concentration of organic modifier.

The CHIRAL-HSA column

The chiral selector used for this stationary phase is the human serum albumin (HSA). The protein has been immobilized onto spherical 5 µm silica particles. The column is used in the reversed-phase mode. Enantiomers of preferentially acidic compounds can be resolved on the column. As for the other two columns retention and enantioselectivity can be regulated by changing the mobile phase composition, see above.

Quality control of the columns

The silica used for the manufacturing of the chiral columns is tested according to an extensive test protocol. When approved the silica surface is modified. All the chemicals used for the surface modification are either purchased against certificate or tested and approved by ChromTech. After surface modification a batch test is performed. If the test parameters are within the specifications, the batch is approved and released for production of columns. The next step is the control of the final product. Each column is tested to control separation efficiency, retention and resolution.

Column selection guide

<table>
<thead>
<tr>
<th>Column</th>
<th>Applicability (type of samples)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIRAL-AGP</td>
<td>Extremely broad applicability. Most likely the column with the broadest applicability of all chiral columns available. Separates all types of compounds: - amines (primary, secondary, tertiary and quaternary nitrogen) - acids (strong and weak) - non-protoplytes (amides, esters, alcohols, sulphoxides, etc.)</td>
</tr>
<tr>
<td>CHIRAL-CBH</td>
<td>More narrow applicability than CHIRAL-AGP. Separates preferably compounds containing one or more nitrogens together with one or more hydrogen accepting or hydrogen donating groups (alcohol, phenol, carbonyl, amide, ether, ester etc.).</td>
</tr>
<tr>
<td>CHIRAL-HSA</td>
<td>More narrow applicability than CHIRAL-AGP. Separates preferably weak and strong acids, zwitterionic and non-protoplytic compounds.</td>
</tr>
</tbody>
</table>

As can be seen the columns overlap for some types of compounds; basic compounds can be separated on both CHIRAL-AGP and CHIRAL-CBH, acidic and non-protoplytes can be separated on both CHIRAL-AGP and CHIRAL-HSA. However, as CHIRAL-AGP is a column with an extremely broad applicability, this column should be the first choice, if the analyte has not been resolved on any of the columns. There are, however, some types of compounds where one of the other columns might be the first choice:

CHIRAL-HSA: very hydrophilic acids
CHIRAL-CBH: very hydrophilic amines

See p. 35 for a list of available column dimensions.
Method development

The columns described here are reversed-phase columns giving many possibilities to affect both the retention and the enantioselectivity. The solutes are retained by three types of forces: ionic binding (charged solutes), hydrophobic interaction and hydrogen bonding. The relative contribution of the different forces to the retention of the solutes, depend of the nature of the analyte. Analytes containing charged groups, hydrogen bonding groups and hydrophobic parts can be retained by interaction with corresponding groups on the chiral selector. From this follows that a separation can be affected by:
- pH
- buffer concentration
- type of buffer
- organic modifier concentration
- type of organic modifier

Method development schemes

All columns are delivered with a method development scheme that makes the method development very simple. In this scheme you will find the starting mobile phase to use for a certain type of compound. When you have the first result with the starting mobile phase you can simply follow the scheme which in most cases gives a baseline separation.

CHIRAL-AGP

The most important tool in method development is the pH. The reason is that by changing the pH the net charge of the chiral selector as well as the charge of the solute can be changed, which affects the way the analyte interacts with the chiral selector. AGP has a low isoelectric point of 2.7. This means that using the column at pH 2.7 gives a net charge of zero of the chiral stationary phase. Increasing the pH from 2.7 up to 7 means that the degree of net negative charge of the chiral selector increases. This gives the prerequisites for ionic binding of positively charged solutes, resulting in a high affinity and high retention of the solute. Reducing the pH towards the isoelectric point reduces the negative charge of the stationary phase, resulting in lower retention of the solute. A change of the net charge of the chiral selector strongly affects the interaction between the solute and the chiral stationary phase. It has been demonstrated that ionic binding of amines to the AGP column is a very important type of interaction for retention of this category of compounds. The solutes are also retained by hydrophobic interaction and hydrogen bonding. The relative influence of the different types of binding forces depends on the nature of the solute, i.e. what kind of structure elements are present in the analyte.

Below you will find examples of the effect of changing the composition of the mobile phase, i.e. the pH, the modifier concentration and the modifier nature etc.

Changing the pH

When chromatographing hydrophobic amines a pH of 4-5 is preferred compared to a pH of 7. The explanation to this finding is that chromatography of the amine at a pH of 7, where the protein has a strong degree of net negative charge and the analyte is positively charged, gives a strong ionic binding of the analyte. However, reducing the pH to the range 4-5 reduces the degree of net negative charge of the protein (the analyte is still fully ionized) which gives a reduction of the ionic bonding of the analyte and the retention is strongly reduced. For some compounds even a decrease to pH 6 might give large improvements compared to pH 7.

The pH effects are demonstrated below for propranolol, chromatographed at pH 4 and 7. Note the very strong reduction of the retention and the improvement of the chromatographic performance at pH 4. See also the numerous application examples of compounds chromatographed at pH 4-5.

The pH can also be an effective tool for affecting the resolution of acids which is demonstrated below for 2-phenoxypropionic acid. The compound has been chromatographed at three different pH, 5, 6 and 7. The analyte is totally ionized (negatively charged) at pH 7, but the charge is reduced at lower pH since the pKa-value is about 4. Furthermore, a decrease in pH reduces the degree of net negative charge of the protein, resulting in higher retention due to reduction of the repulsion between the analyte and the chiral stationary phase. The solute is retained by hydrophobic interaction and hydrogen bonding.
Changing the buffer concentration

By changing the buffer concentration, it is possible to affect both the retention and the enantioselectivity. Such effects have been observed for acids and for certain amines. The chromatograms below an example for the acidic drug naproxen.

![Chromatograms showing the effect of buffer concentration on retention and enantioselectivity.]

Changing the modifier concentration

2-propanol, acetonitrile, methanol, ethanol and 1-propanol is the most frequently used organic modifiers. Higher modifier concentration reduces the retention and the enantioselectivity for both amines and acids. However, for certain types of acids the enantioselectivity can be strongly improved by increasing the modifier concentration, as is demonstrated for warfarin below.

![Diagram showing the effect of modifier concentration on enantioselectivity.]

Mobile phase: 2-propanol in 0.01 M phosphate buffer, pH 7.0

<table>
<thead>
<tr>
<th>Conc. 2-propanol (%)</th>
<th>k'</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4.73</td>
<td>1.33</td>
</tr>
<tr>
<td>10</td>
<td>2.45</td>
<td>1.42</td>
</tr>
<tr>
<td>12</td>
<td>1.19</td>
<td>1.53</td>
</tr>
<tr>
<td>14</td>
<td>0.76</td>
<td>1.57</td>
</tr>
</tbody>
</table>

Changing the nature of the modifier

By changing from one organic modifier to another with different hydrogen bonding properties, i.e. from acetonitrile (hydrogen ac-
cepting properties) to 2-propanol (hydrogen accepting and donating properties), it is possible to strongly affect the enantioselectivity as demonstrated below for pindolol. Using 1-propanol results in no chiral selectivity, while acetonitrile gives a complete base-line resolution.

![Diagram showing the effect of modifier type on enantioselectivity.]

CHIRAL-CBH

The majority of the compounds chromatographed on the CHIRAL-CBH column are amines. See the applications. The CBH column is used in the reversed-phase mode.

The same type of mobile phases can be used on both the AGP and the CBH columns. The retention and the enantioselectivity is affected by the pH, the buffer concentration, the nature and the concentration of the organic modifier. The same types of forces are involved in the retention process of the solute as was described for the AGP column above.

Changing the pH

A decrease in pH will result in decreasing retention and in most cases lower enantioselectivity, as is demonstrated for epanolol below.

![Diagram showing the effect of pH on retention and enantioselectivity.]

Column: CHIRAL-CBH
100 x 4.0 mm

Mobile phase:
5 % 2-propanol in 10 mM sodium acetate buffer + 50 μM disodium EDTA
Changing the modifier concentration

The most widely used organic modifiers on the CBH column are 2-propanol and acetonitrile. Normally, increasing modifier concentration results in reduction of the retention and increasing enantioselectivity. These effects are illustrated below for atenolol and talinolol.

![Retention vs. Modifier Concentration](image1)

![Separation Factor vs. Modifier Concentration](image2)

Addition of an organic modifier has in almost all cases a positive influence on the chromatographic performance compared to chromatography in pure buffers. See below for laudanosine.

![Laudanosine](image3)

Mobile phases:
1. 10 mM sod. phosph. b., pH 6.0 + 50 μM disodium EDTA
2. 10 % 2-propanol in 10 mM sod. phosph. b., pH 6.0 + 50 μM disodium EDTA

Changing the pH

Depending on the nature of the analyte, a change in pH will have different effects. For an acid, a decreasing pH will result in higher retention and increasing resolution. If the analyte is an ampholyte as tryptophan, the result can be seen in the table:

<table>
<thead>
<tr>
<th>pH</th>
<th>k'1</th>
<th>k'2</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>1.44</td>
<td>1.82</td>
<td>1.26</td>
</tr>
<tr>
<td>6.0</td>
<td>1.30</td>
<td>1.87</td>
<td>1.44</td>
</tr>
<tr>
<td>7.0</td>
<td>0.75</td>
<td>3.72</td>
<td>4.97</td>
</tr>
</tbody>
</table>

Changing the modifier concentration

2-propanol, 1-propanol and acetonitrile are frequently used modifiers on the CHIRAL-HSA column. A higher organic modifier concentration reduces the retention. Normally, also the enantioselectivity will decrease. These effects are exemplified below for kynurenine.

![Capacity Factor vs. 2-Propanol Concentration](image4)

![Separation Factor vs. 2-Propanol Concentration](image5)

However, for certain acidic compounds it has been observed that the enantioselectivity is increasing when an organic modifier is added to the mobile phase as is demonstrated below for absic acid.

Abscisic acid, effect of 2-propanol

<table>
<thead>
<tr>
<th>% 2-propanol</th>
<th>k'1</th>
<th>k'2</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.62</td>
<td>4.56</td>
<td>1.26</td>
</tr>
<tr>
<td>1</td>
<td>1.96</td>
<td>3.37</td>
<td>1.92</td>
</tr>
</tbody>
</table>

CHIRAL-HSA

The majority of the compounds that have been resolved on the CHIRAL-HSA column are acids, ampholytes and non-protolytes. See the applications. The HSA column is used in the reversed-phase mode.

The same type of mobile phases can be used on both the AGP, the CBH and the HSA columns. The retention and the enantioselectivity is affected by the pH, the buffer concentration, the nature and the concentration of the organic modifier. The same types of forces are involved in the retention process of the solute as was described for the AGP column above.
<table>
<thead>
<tr>
<th>Substance</th>
<th>Column</th>
<th>Page</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abscisic acid</td>
<td>CHIRAL-AGP</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Acetobulol</td>
<td>CHIRAL-CBH</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>β-alanine-N-[2-(3,4-dihydro-2H-1-benzo-pyran-3-yl)-ethyl] methyl ester hydrochloride</td>
<td>CHIRAL-AGP</td>
<td>11</td>
<td>76, 129, 149</td>
</tr>
<tr>
<td>Alfuzosin</td>
<td>CHIRAL-AGP</td>
<td>11</td>
<td>17, 30</td>
</tr>
<tr>
<td>Alimemazine</td>
<td>CHIRAL-AGP</td>
<td>11</td>
<td>4, 29, 101</td>
</tr>
<tr>
<td>Alpenrolol</td>
<td>CHIRAL-AGP</td>
<td>11</td>
<td>6, 12, 13, 29, 76, 101, 112</td>
</tr>
<tr>
<td>Aminoglutethimide</td>
<td>CHIRAL-AGP</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Amlodipine</td>
<td>CHIRAL-AGP</td>
<td>11</td>
<td>155</td>
</tr>
<tr>
<td>Atenolol</td>
<td>CHIRAL-CBH</td>
<td>11</td>
<td>14, 29, 76, 101, 149</td>
</tr>
<tr>
<td>Atropine</td>
<td>CHIRAL-AGP</td>
<td>11</td>
<td>8, 9, 12, 13, 25, 69</td>
</tr>
<tr>
<td>8-Aza[4,5]decane-7,9-dione-8-(2-[[2,3-dihydro-1,4-benzodioxin-2-yl]-methyl]aminoethyl) monomethanesulfonate</td>
<td>CHIRAL-AGP</td>
<td>11</td>
<td>127</td>
</tr>
<tr>
<td>Bendroflumethiazide</td>
<td>CHIRAL-AGP</td>
<td>11</td>
<td>7, 12, 13</td>
</tr>
<tr>
<td>Benflourex</td>
<td>CHIRAL-AGP</td>
<td>12</td>
<td>101</td>
</tr>
<tr>
<td>Benzoin</td>
<td>CHIRAL-AGP</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>N-benzoyl-DL-alanine</td>
<td>CHIRAL-AGP</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>N-benzoyl-DL-leucine</td>
<td>CHIRAL-HSA</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>N-benzoyl-DL-valine</td>
<td>CHIRAL-AGP</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>α,α’-bis[3-(N-benzyl-N-methylcarbamoyl)-piperidino]-p-xylene dihydrobromide</td>
<td>CHIRAL-AGP</td>
<td>12</td>
<td>82</td>
</tr>
<tr>
<td>Berabroest sodium</td>
<td>CHIRAL-AGP</td>
<td>12</td>
<td>66, 91</td>
</tr>
<tr>
<td>Betaxolol</td>
<td>CHIRAL-CBH</td>
<td>12</td>
<td>76, 87, 149</td>
</tr>
<tr>
<td>N-t-BOC-D,L-valine</td>
<td>CHIRAL-AGP</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Bumadizon</td>
<td>CHIRAL-AGP</td>
<td>12</td>
<td>32</td>
</tr>
<tr>
<td>Bunolol</td>
<td>CHIRAL-AGP</td>
<td>12</td>
<td>119</td>
</tr>
<tr>
<td>Bupivacaine</td>
<td>CHIRAL-AGP</td>
<td>12</td>
<td>1, 2, 7, 9, 11, 12, 13, 22, 37, 38, 44, 71, 141, 154</td>
</tr>
<tr>
<td>Bupranolol</td>
<td>CHIRAL-AGP</td>
<td>13</td>
<td>76, 101</td>
</tr>
<tr>
<td>Bupropion</td>
<td>CHIRAL-AGP</td>
<td>13</td>
<td>101</td>
</tr>
<tr>
<td>Carazolol</td>
<td>CHIRAL-AGP</td>
<td>13</td>
<td>76, 101</td>
</tr>
<tr>
<td>Carbuterol</td>
<td>CHIRAL-CBH</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Carprofen</td>
<td>CHIRAL-AGP</td>
<td>13</td>
<td>100</td>
</tr>
<tr>
<td>Carvediol</td>
<td>CHIRAL-CBH</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Cathione</td>
<td>CHIRAL-CBH</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>cis-trans-Cavinton</td>
<td>CHIRAL-AGP</td>
<td>13</td>
<td>70</td>
</tr>
<tr>
<td>Chlophedianol</td>
<td>CHIRAL-AGP</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Chlortalidone</td>
<td>CHIRAL-AGP</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Cimetidine sulphoxide</td>
<td>CHIRAL-CBH</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Citalopram</td>
<td>CHIRAL-AGP</td>
<td>13</td>
<td>145</td>
</tr>
<tr>
<td>Clenbuterol</td>
<td>CHIRAL-AGP</td>
<td>14</td>
<td>101</td>
</tr>
<tr>
<td>Clocapristine</td>
<td>CHIRAL-AGP</td>
<td>14</td>
<td>101</td>
</tr>
<tr>
<td>Cyamemazine</td>
<td>CHIRAL-AGP</td>
<td>14</td>
<td>138</td>
</tr>
<tr>
<td>Cyclopentolate</td>
<td>CHIRAL-AGP</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Cyclophosphamid</td>
<td>CHIRAL-AGP</td>
<td>14</td>
<td>140</td>
</tr>
<tr>
<td>Cyklandelate</td>
<td>CHIRAL-AGP</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Dansyl-DL-valine</td>
<td>CHIRAL-AGP</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>1-Decyl-3-(N,N-diethylcarbamoyl) piperidine Hydromitrone</td>
<td>CHIRAL-AGP</td>
<td>14</td>
<td>82</td>
</tr>
<tr>
<td>2-(2,4-Dichlorophenoxy)-propionic acid</td>
<td>CHIRAL-AGP</td>
<td>14</td>
<td>125</td>
</tr>
<tr>
<td>Dihydromiazepam</td>
<td>CHIRAL-AGP</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>2-(4,5-dihydro-1H-imidazol-2-yl)-2-propyl-1,2,3,4-tetrahydropropyrolo [3,2,1-hi]-indole</td>
<td>CHIRAL-AGP</td>
<td>14</td>
<td>63</td>
</tr>
<tr>
<td>Substance</td>
<td>Column</td>
<td>Page</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>Dihydropyridines</td>
<td>CHIRAL-AGP</td>
<td>15</td>
<td>148</td>
</tr>
<tr>
<td>Diltiazem</td>
<td>CHIRAL-AGP</td>
<td>15</td>
<td>36</td>
</tr>
<tr>
<td>Dimethindene</td>
<td>CHIRAL-AGP</td>
<td>15</td>
<td>9, 12, 13, 112, 138</td>
</tr>
<tr>
<td>Diperodon</td>
<td>CHIRAL-AGP</td>
<td>15</td>
<td>9, 12, 13, 101</td>
</tr>
<tr>
<td>Disopyramide</td>
<td>CHIRAL-AGP</td>
<td>15</td>
<td>1, 2, 3, 4, 7, 9, 12, 13, 15, 16, 35, 71, 85, 101</td>
</tr>
<tr>
<td>Dixyrazine</td>
<td>CHIRAL-AGP</td>
<td>15</td>
<td>29, 101</td>
</tr>
<tr>
<td>N-2,4-DNP-DL-α-amino-n butyric acid</td>
<td>CHIRAL-AGP</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>N-2,4-DNP-DL-α-amino-n butyric acid</td>
<td>CHIRAL-HSA</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>N-2,4-DNP-DL-citrulline</td>
<td>CHIRAL-HSA</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>N-2,4-DNP-DL-ethionine</td>
<td>CHIRAL-AGP</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>N-2,4-DNP-DL-glutamic acid</td>
<td>CHIRAL-HSA</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>N-2,4-DNP-DL-methionine</td>
<td>CHIRAL-AGP</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>N-2,4-DNP-DL-methionine</td>
<td>CHIRAL-HSA</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>N-2,4-DNP-DL-norleucine</td>
<td>CHIRAL-AGP</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Dobutamine</td>
<td>CHIRAL-CBH</td>
<td>16</td>
<td>8, 12, 13</td>
</tr>
<tr>
<td>Doxazosin</td>
<td>CHIRAL-AGP</td>
<td>16</td>
<td>41</td>
</tr>
<tr>
<td>Dropropizine</td>
<td>CHIRAL-CBH</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Epanolol</td>
<td>CHIRAL-CBH</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Ephedrine</td>
<td>CHIRAL-AGP</td>
<td>16</td>
<td>8, 9, 12, 13</td>
</tr>
<tr>
<td>Epibatidine</td>
<td>CHIRAL-AGP</td>
<td>16</td>
<td>106</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>CHIRAL-CBH</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Etodolac</td>
<td>CHIRAL-AGP</td>
<td>16</td>
<td>103</td>
</tr>
<tr>
<td>Felodipine</td>
<td>CHIRAL-AGP</td>
<td>16</td>
<td>123, 148</td>
</tr>
<tr>
<td>Fendiline</td>
<td>CHIRAL-AGP</td>
<td>17</td>
<td>101</td>
</tr>
<tr>
<td>Fenoterol</td>
<td>CHIRAL-CBH</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Fenoprofen</td>
<td>CHIRAL-AGP</td>
<td>17</td>
<td>8, 32, 100, 110</td>
</tr>
<tr>
<td>Flurbiprofen</td>
<td>CHIRAL-AGP</td>
<td>17</td>
<td>32, 58, 72, 77, 96, 100, 110, 113</td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>CHIRAL-AGP</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Folicic acid (Leucovorin)</td>
<td>CHIRAL-HSA</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>H 174/48</td>
<td>CHIRAL-CBH</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>H 201/68</td>
<td>CHIRAL-CBH</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>H 309/40</td>
<td>CHIRAL-AGP</td>
<td>27</td>
<td>147</td>
</tr>
<tr>
<td>H 310/83</td>
<td>CHIRAL-AGP</td>
<td>27</td>
<td>147</td>
</tr>
<tr>
<td>Hesperitin</td>
<td>CHIRAL-AGP</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Hexobarbital</td>
<td>CHIRAL-AGP</td>
<td>17</td>
<td>7, 12, 13, 28</td>
</tr>
<tr>
<td>Hippuryl-phenyllactic acid</td>
<td>CHIRAL-AGP</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>HMG-CoA reductase inhibitor</td>
<td>CHIRAL-AGP</td>
<td>17</td>
<td>78</td>
</tr>
<tr>
<td>Hydroxychloroquine</td>
<td>CHIRAL-AGP</td>
<td>18</td>
<td>62, 89, 120</td>
</tr>
<tr>
<td>3-Hydroxymethyl-2-methyl-9-phenyl-7H-8,9-dihydropyran-2,3-c-Imidazo [1,2-a]pyridine</td>
<td>CHIRAL-AGP</td>
<td>27</td>
<td>147</td>
</tr>
<tr>
<td>E-10-Hydroxy nortriptyline</td>
<td>CHIRAL-AGP</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>2-(p-Hydroxyphenonyl)propionic acid</td>
<td>CHIRAL-AGP</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>4-Hydroxypropranolol</td>
<td>CHIRAL-CBH</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>CHIRAL-AGP</td>
<td>18</td>
<td>7, 8, 12, 13, 29, 32, 42, 43, 46, 53, 72, 96, 100, 103, 110, 150, 151</td>
</tr>
<tr>
<td>Ifosfamide</td>
<td>CHIRAL-AGP</td>
<td>18</td>
<td>111</td>
</tr>
<tr>
<td>Isopropylidenglycerol-4-methylester</td>
<td>CHIRAL-AGP</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Isradipine</td>
<td>CHIRAL-AGP</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Ketamine</td>
<td>CHIRAL-AGP</td>
<td>18</td>
<td>2, 12, 13, 71, 142</td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>CHIRAL-HSA</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Ketoprofen</td>
<td>CHIRAL-AGP</td>
<td>19</td>
<td>7, 12, 13, 32, 96, 100, 110, 131</td>
</tr>
<tr>
<td>Ketoprofen</td>
<td>CHIRAL-HSA</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

8
<table>
<thead>
<tr>
<th>Substance</th>
<th>Column</th>
<th>Page</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kynurenine</td>
<td>CHIRAL-HSA</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Laudanosine</td>
<td>CHIRAL-CBH</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Luciferin</td>
<td>CHIRAL-AGP</td>
<td>19</td>
<td>85</td>
</tr>
<tr>
<td>Medetomidine</td>
<td>CHIRAL-AGP</td>
<td>19</td>
<td>26</td>
</tr>
<tr>
<td>Mefloquine</td>
<td>CHIRAL-AGP</td>
<td>19</td>
<td>61, 107</td>
</tr>
<tr>
<td>Mephenytoin</td>
<td>CHIRAL-AGP</td>
<td>19</td>
<td>28</td>
</tr>
<tr>
<td>Mepivacaine</td>
<td>CHIRAL-AGP</td>
<td>19</td>
<td>1, 2, 9, 11, 12, 13, 37, 71, 141</td>
</tr>
<tr>
<td>Mepenzolate bromide</td>
<td>CHIRAL-AGP</td>
<td>19</td>
<td>1, 2, 8, 9, 12, 13</td>
</tr>
<tr>
<td>Meptazinol</td>
<td>CHIRAL-AGP</td>
<td>19</td>
<td>126</td>
</tr>
<tr>
<td>Metanephrine</td>
<td>CHIRAL-CBH</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Methadone</td>
<td>CHIRAL-AGP</td>
<td>20</td>
<td>9, 12, 13, 51, 84, 105, 115, 143, 146</td>
</tr>
<tr>
<td>o-Methoxymandelic acid</td>
<td>CHIRAL-HSA</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>α-Methoxyphenylacetic acid</td>
<td>CHIRAL-HSA</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1-(p-Methoxyphenyl)-3-butyramine</td>
<td>CHIRAL-AGP</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3-Methylenelether-2-methyl-9-phenyl-7H-8,9-dihydropyrano[2,3-c]-imidazo[1,2-a]pyridine</td>
<td>CHIRAL-AGP</td>
<td>27</td>
<td>147</td>
</tr>
<tr>
<td>Methylphenobarbital</td>
<td>CHIRAL-AGP</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>Methylphenylcynoacetic acid ethyl ester</td>
<td>CHIRAL-AGP</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Metolazone</td>
<td>CHIRAL-AGP</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Metoprolol</td>
<td>CHIRAL-AGP</td>
<td>20</td>
<td>6, 8, 9, 12, 13, 20, 21, 22, 23, 29, 69, 76, 87, 101, 112, 149</td>
</tr>
<tr>
<td>Mianserin</td>
<td>CHIRAL-AGP</td>
<td>20</td>
<td>130, 132</td>
</tr>
<tr>
<td>Midodrine</td>
<td>CHIRAL-AGP</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Modafinil</td>
<td>CHIRAL-AGP</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>Moprolol</td>
<td>CHIRAL-CBH</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Mosapride</td>
<td>CHIRAL-AGP</td>
<td>21</td>
<td>134, 152</td>
</tr>
<tr>
<td>1-(1-Naphthyl)-ethyamine</td>
<td>CHIRAL-AGP</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Naproxen</td>
<td>CHIRAL-AGP</td>
<td>21</td>
<td>7, 8, 12, 13, 32, 33, 49, 67, 80, 100, 117</td>
</tr>
<tr>
<td>Nefopam</td>
<td>CHIRAL-AGP</td>
<td>21</td>
<td>101</td>
</tr>
<tr>
<td>Nicotine</td>
<td>CHIRAL-AGP</td>
<td>21</td>
<td>93</td>
</tr>
<tr>
<td>Nitrendipine</td>
<td>CHIRAL-AGP</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Norprenephrine</td>
<td>CHIRAL-CBH</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Norketamin</td>
<td>CHIRAL-AGP</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Normetanephrine</td>
<td>CHIRAL-CBH</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Octopamine</td>
<td>CHIRAL-CBH</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Omeprazole</td>
<td>CHIRAL-AGP</td>
<td>21</td>
<td>133,144</td>
</tr>
<tr>
<td>Oxamnique</td>
<td>CHIRAL-AGP</td>
<td>22</td>
<td>31, 34</td>
</tr>
<tr>
<td>Oxazoline</td>
<td>CHIRAL-AGP</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Oxefazone</td>
<td>CHIRAL-AGP</td>
<td>22</td>
<td>47</td>
</tr>
<tr>
<td>Oxodipine</td>
<td>CHIRAL-AGP</td>
<td>22</td>
<td>118</td>
</tr>
<tr>
<td>Oxprenolol</td>
<td>CHIRAL-AGP</td>
<td>22</td>
<td>6, 9, 12, 13, 29, 76, 101, 112</td>
</tr>
<tr>
<td>Oxybutynin</td>
<td>CHIRAL-CBH</td>
<td>22</td>
<td>153</td>
</tr>
<tr>
<td>Oxyphencyclimine</td>
<td>CHIRAL-AGP</td>
<td>22</td>
<td>1, 9, 12, 13</td>
</tr>
<tr>
<td>Oxyphenonium</td>
<td>CHIRAL-AGP</td>
<td>22</td>
<td>48</td>
</tr>
<tr>
<td>Pamatolol</td>
<td>CHIRAL-CBH</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Pargyline N-oxide</td>
<td>CHIRAL-AGP</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Pentothiobental</td>
<td>CHIRAL-AGP</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Pentobarbitone</td>
<td>CHIRAL-AGP</td>
<td>22</td>
<td>128</td>
</tr>
<tr>
<td>Pheniramine</td>
<td>CHIRAL-AGP</td>
<td>23</td>
<td>101, 112, 138</td>
</tr>
<tr>
<td>Substance</td>
<td>Column</td>
<td>Page</td>
<td>References</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>-------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>2-Phenoxypropionic acid</td>
<td>CHIRAL-AGP</td>
<td>23</td>
<td>7, 8, 12, 13</td>
</tr>
<tr>
<td>2-Phenylbutyric acid</td>
<td>CHIRAL-AGP</td>
<td>23</td>
<td>8, 9, 12, 13</td>
</tr>
<tr>
<td>Phenylethanolamine</td>
<td>CHIRAL-CBH</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>2-Phenylpropionic acid (Hydratropic acid)</td>
<td>CHIRAL-HSA</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Phenyramidol</td>
<td>CHIRAL-AGP</td>
<td>23</td>
<td>2, 12</td>
</tr>
<tr>
<td>Pindolol</td>
<td>CHIRAL-AGP</td>
<td>23</td>
<td>6, 12, 13, 29, 76, 87, 101, 112</td>
</tr>
<tr>
<td>3-PPP</td>
<td>CHIRAL-AGP</td>
<td>23</td>
<td>2, 12, 13</td>
</tr>
<tr>
<td>Practolol</td>
<td>CHIRAL-AGP</td>
<td>23</td>
<td>76</td>
</tr>
<tr>
<td>Prilocaine</td>
<td>CHIRAL-CBH</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>Procyclidine</td>
<td>CHIRAL-AGP</td>
<td>23</td>
<td>101</td>
</tr>
<tr>
<td>Proglumide</td>
<td>CHIRAL-AGP</td>
<td>23</td>
<td>85</td>
</tr>
<tr>
<td>Promethazine</td>
<td>CHIRAL-AGP</td>
<td>24</td>
<td>1, 2, 4, 5, 8, 9, 12, 13, 29, 101, 112, 138</td>
</tr>
<tr>
<td>Propafenone</td>
<td>CHIRAL-CBH</td>
<td>24</td>
<td>101</td>
</tr>
<tr>
<td>Propranolol</td>
<td>CHIRAL-AGP</td>
<td>24</td>
<td>6, 12, 13, 29, 73, 76, 87, 92, 101, 112, 114, 145, 149</td>
</tr>
<tr>
<td>Proxyphylline</td>
<td>CHIRAL-CBH</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Prozac</td>
<td>CHIRAL-AGP</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Remoxipride</td>
<td>CHIRAL-AGP</td>
<td>24</td>
<td>92, 101</td>
</tr>
<tr>
<td>Rosmarinic acid</td>
<td>CHIRAL-AGP</td>
<td>24</td>
<td>135</td>
</tr>
<tr>
<td>Salbutamol</td>
<td>CHIRAL-AGP</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Salmeterol</td>
<td>CHIRAL-CBH</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Secobarbital</td>
<td>CHIRAL-AGP</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td>Solketal tosylate</td>
<td>CHIRAL-AGP</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Sotalol</td>
<td>CHIRAL-CBH</td>
<td>24</td>
<td>76, 149</td>
</tr>
<tr>
<td>Sulfynpyrazon</td>
<td>CHIRAL-AGP</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Suprofen</td>
<td>CHIRAL-AGP</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Talinol</td>
<td>CHIRAL-CBH</td>
<td>25</td>
<td>76</td>
</tr>
<tr>
<td>Terbutaline</td>
<td>CHIRAL-AGP</td>
<td>25</td>
<td>7, 8, 9, 12, 13, 22</td>
</tr>
<tr>
<td>Terodiline</td>
<td>CHIRAL-AGP</td>
<td>25</td>
<td>29, 71</td>
</tr>
<tr>
<td>1,2,3,4-tetrahydro-1-naphthol</td>
<td>CHIRAL-AGP</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Tetrahydropapaveroline</td>
<td>CHIRAL-CBH</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Tetrahydrozoline</td>
<td>CHIRAL-AGP</td>
<td>25</td>
<td>8, 12, 13, 101</td>
</tr>
<tr>
<td>Tetramisole</td>
<td>CHIRAL-CBH</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Thalidomide</td>
<td>CHIRAL-CBH</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Thiopentone</td>
<td>CHIRAL-AGP</td>
<td>25</td>
<td>128</td>
</tr>
<tr>
<td>Thiordazine sulfoxide</td>
<td>CHIRAL-AGP</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Tiaprofenic acid</td>
<td>CHIRAL-AGP</td>
<td>25</td>
<td>32, 100, 137</td>
</tr>
<tr>
<td>Timolol</td>
<td>CHIRAL-AGP</td>
<td>26</td>
<td>76, 112</td>
</tr>
<tr>
<td>Tipreanol</td>
<td>CHIRAL-AGP</td>
<td>26</td>
<td>101</td>
</tr>
<tr>
<td>Tofisopam</td>
<td>CHIRAL-AGP</td>
<td>26</td>
<td>125</td>
</tr>
<tr>
<td>Tolamol</td>
<td>CHIRAL-CBH</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Toliprol</td>
<td>CHIRAL-CBH</td>
<td>26</td>
<td>76</td>
</tr>
<tr>
<td>Tolperisone</td>
<td>CHIRAL-AGP</td>
<td>26</td>
<td>101</td>
</tr>
<tr>
<td>Trihexyphenidyl</td>
<td>CHIRAL-AGP</td>
<td>26</td>
<td>101</td>
</tr>
<tr>
<td>Trimipramine</td>
<td>CHIRAL-AGP</td>
<td>26</td>
<td>4, 29, 81, 92, 101</td>
</tr>
<tr>
<td>Tropicamide</td>
<td>CHIRAL-AGP</td>
<td>26</td>
<td>2, 12</td>
</tr>
<tr>
<td>Uxepam</td>
<td>CHIRAL-AGP</td>
<td>26</td>
<td>125</td>
</tr>
<tr>
<td>Vamipam</td>
<td>CHIRAL-AGP</td>
<td>26</td>
<td>104</td>
</tr>
<tr>
<td>Verapamil</td>
<td>CHIRAL-AGP</td>
<td>26</td>
<td>8, 12, 13, 24, 50, 68, 86, 90, 139</td>
</tr>
<tr>
<td>Warfarin</td>
<td>CHIRAL-AGP</td>
<td>27</td>
<td>27, 74, 94, 99</td>
</tr>
<tr>
<td>Reference 19</td>
<td>CHIRAL-AGP</td>
<td>27</td>
<td>19</td>
</tr>
<tr>
<td>Reference 83</td>
<td>CHIRAL-AGP</td>
<td>27</td>
<td>83</td>
</tr>
<tr>
<td>Reference 97</td>
<td>CHIRAL-AGP</td>
<td>27</td>
<td>97</td>
</tr>
</tbody>
</table>
Abscisic acid

Column: CHIRAL-AGP 100 x 4.0 mm
Mobile phase: 75 mM sod.ph.b.
Detection: UV 225 nm
Sample conc.: 0.02 mg/ml

Acetbutolol

Column: CHIRAL-CB 100 x 4.0 mm
Mobile phase: 8% 2-propanol in 10 mM sod.ac.b.
Detection: UV 210 nm
Sample conc.: 0.02 mg/ml

β-alamin-N-[2-(3,4-dihydro-2H-1-benzo[4,5]cyclohepta[1,2-d]-1,3-oxazin-5-yl-methylamino)ethyl]methylester hydrochloride (Ref. 129)

Column: CHIRAL-AGP 150 x 4.0 mm
Mobile phase: phosph. buffer, pH 7.0
Detection: UV 225 nm
Sample conc.: 0.03 mg/ml

Alfuzosin (Ref. 30)

Column: CHIRAL-AGP 100 x 4.0 mm
Mobile phase: 6% acetonitrile in 0.025 M potassium phos. b. pH 7.4 containing 0.025 M TBA/Br
Flow: 0.9 ml/min
Detection: Fluorescence
Ex = 290 nm
Em = 400 nm

Alimemazine

Column: CHIRAL-AGP 100 x 4.0 mm
Mobile phase: 1% acetonitrile in 10 mM sod.ac.b.
Detection: UV 225 nm
Sample conc.: 0.025 mg/ml

Alprenolol

Column: CHIRAL-AGP 100 x 4.0 mm
Mobile phase: 3% acetonitrile in 10 mM sod.ac.b.
Detection: UV 225 nm
Sample conc.: 0.025 mg/ml

Aminoglutethimide

Column: CHIRAL-AGP 100 x 4.0 mm
Mobile phase: 9 mM amm.ac.b.
Detection: UV 225 nm
Sample conc.: 0.02 mg/ml

Amodipine (Ref. 155)

Column: CHIRAL-AGP 150 x 4.0 mm
Mobile phase: 1% 1-propanol in 10 mM acetate buffer, pH 4.5
Temp.: 30°C
Column switching system

Atenolol

Column: CHIRAL-CB 100 x 4.0 mm
Mobile phase: 8% 2-propanol in 10 mM sod.ph.b.
Detection: UV 265 nm
Sample conc.: 0.03 mg/ml

Atropine

Column: CHIRAL-AGP 100 x 4.0 mm
Mobile phase: 2% 2-propanol and 5 mM ocatonic acid in 0.01 M sod.ph.b.
Detection: UV 255 nm
Sample conc.: 0.08 mg/ml

8-Azaspiro[4,5]decan-7,9-dione-8-(2-[[2,3-dihydro-1,4-benzodioxin-2-yl]-methyl]amino)ethyl monomethanesulfonate (Ref. 127)

Column: CHIRAL-AGP 100 x 4.0 mm
Mobile phase: 27.5% methanol in 50 mM phos. buffer, pH 5.0
Flow: 1.0 ml/min
Detection: UV 210 nm

Bendroflumethiazide

Column: CHIRAL-AGP 100 x 4.0 mm
Mobile phase: 3% 1-propanol in 10 mM sod.ph.b.
Detection: UV 225 nm
Sample conc.: 0.02 mg/ml
Benflourex

Column: CHIRAL-AGP 100 x 4.0 mm
Mobile phase: 4% 2-propanol in 10 mM sodium acetate, pH 5.0 (total acetate conc. = 15 mM)
Detection: UV 225 nm
Sample conc.: 0.02 mg/ml

Benzoin

Column: CHIRAL-AGP 100 x 4.0 mm and CHIRAL-AGP guard column 10 x 3.0 mm
Mobile phase: 5% methanol in 10 mM sodium phosphate, pH 6.0
Detection: UV 225 nm
Sample conc.: 0.02 mg/ml

N-benzoyl-DL-alanine

Column: CHIRAL-AGP 100 x 4.0 mm
Mobile phase: 10 mM sodium phosphate, pH 5.5
Detection: UV 210 nm
Sample conc.: 0.1 mg/ml

N-benzoyl-DL-leucine

Column: CHIRAL-HSA 100 x 4.0 mm
Mobile phase: 10% 2-propanol in 100 mM sodium phosphate, pH 7.0
Detection: UV 225 nm
Sample conc.: 0.02 mg/ml

N-benzoyl-DL-valine

Column: CHIRAL-AGP 100 x 4.0 mm
Mobile phase: 3% 2-propanol in 10 mM sodium phosphate, pH 5.0
Detection: UV 200 nm
Sample conc.: 0.1 mg/ml

α,α'-bis[3-(N-benzyl-N-methylcarbamoyl)-piperidino]-p-xylene dihydrobromide (Ref. 82)

Column: CHIRAL-AGP 100 x 4.0 mm
Mobile phase: 0.5 M sodium acetate in 20 mM Na2HPO4, pH 7.0
Flow: 0.5 mL/min
Detection: Fluorescence, Ex = 282 nm, Em = 304 nm

Berabrost sodium (Ref. 91)

Column: CHIRAL-CBH 100 x 4.0 mm
Mobile phase: 5% 2-propanol in 10 mM sodium phosphate, pH 5.5 + 50 mM diethylamine EDTA
Sample conc.: 0.05 mg/ml

β-Taxonol

N-t-BOC-DL-valine

Column: CHIRAL-AGP 100 x 4.0 mm
Mobile phase: 3% acetonitrile in 10 mM sodium phosphate, pH 5.0
Detection: UV 200 nm
Sample conc.: 0.2 mg/ml

Bumadizon

Column: CHIRAL-AGP 100 x 4.0 mm and CHIRAL-AGP guard column 10 x 3.0 mm
Mobile phase: 10% acetonitrile in 10 mM sodium phosphate, pH 7.0
Detection: UV 225 nm
Sample conc.: 0.02 mg/ml

Bunolol (Ref. 119)

Column: CHIRAL-AGP 100 x 4.0 mm
Mobile phase: 2% 2-propanol in 10 mM phosphate buffer, pH 7.0, 1 mM DMOA
Flow: 0.9 mL/min
Detection: UV 223 nm

Bupivacaine

Column: CHIRAL-AGP 100 x 4.0 mm
Mobile phase: 8% tetrahydrofuran in 10 mM sodium phosphate, pH 7.0
Detection: UV 225 nm
Sample conc.: 0.02 mg/ml
<table>
<thead>
<tr>
<th>Dihydropyridines</th>
<th>Dihydropyridines</th>
<th>Diltiazem</th>
<th>Dimethindene</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 324/38, H 324/78, H 125/66 and H 152/80 (Ref. 148)</td>
<td>H 152/81, H 172/99 and H 324/38 (Ref. 148)</td>
<td>Column: CHIRAL-AGP 100 x 4.0 mm Mobile phase: 10% 2-propanol in 0.01 M sod.ph.b. pH 7.0 Detection: UV 225 nm Sample conc.: 0.02 mg/ml</td>
<td>Column: CHIRAL-AGP 100 x 4.0 mm Mobile phase: 10% 2-propanol in 0.01 M sod.ph.b. pH 7.0 Detection: UV 225 nm Sample conc.: 0.02 mg/ml</td>
</tr>
<tr>
<td>Column: CHIRAL-AGP 100 x 4.0 mm Mobile phase: 25 % methanol in 10 mM phosph. b., pH 4.51 Detection: UV 242 nm Flow: 1 ml/min</td>
<td>Column: CHIRAL-AGP 100 x 4.0 mm Mobile phase: 4% acetonitrile, 18% methanol in 10 mM ph.b., pH 5.5 Detection: UV 242 nm</td>
<td>Column: CHIRAL-AGP 100 x 4.0 mm Mobile phase: 1% acetonitrile in 10 mM sod.acb. pH 4.0 (total acetic conc. = 60mM) Detection: UV 225 nm Sample conc.: 0.03 mg/ml</td>
<td>Column: CHIRAL-AGP 100 x 4.0 mm Mobile phase: 8% 2-propanol in 0.01 M sod.ph.b. pH 6.0 Detection: UV 225 nm Sample conc.: 0.1 mg/ml</td>
</tr>
<tr>
<td>Diperodon</td>
<td>Disopyramide</td>
<td>Dixyrazine</td>
<td>N-2,4-DNP-DL-a-amino-n-butyric acid</td>
</tr>
<tr>
<td>Column: CHIRAL-AGP 100 x 4.0 mm Mobile phase: 0.5% 2-propanol in 30 mM amm.ac.b. pH 4.1 (total acetate conc. = 110 mM) Detection: UV 225 nm Sample conc.: 0.02 mg/ml</td>
<td>Column: CHIRAL-AGP 100 x 4.0 mm and CHIRAL-AGP guard column 10 x 3.0 mm Mobile phase: 10% 2-propanol in 0.01 M sod.ph.b. pH 7.0 Detection: UV 225 nm Sample conc.: 0.02 mg/ml</td>
<td>Column: CHIRAL-AGP 100 x 4.0 mm Mobile phase: 1% acetonitrile in 10 mM sod.acb. pH 4.0 (total acetic conc. = 60mM) Detection: UV 225 nm Sample conc.: 0.03 mg/ml</td>
<td>Column: CHIRAL-AGP 100 x 4.0 mm Mobile phase: 100 mM sod.ph.b. pH 6.0 Detection: UV 210 nm Sample conc.: 0.1 mg/ml</td>
</tr>
<tr>
<td>N-2,4-DNP-DL-a-amino-n-butyric acid</td>
<td>N-2,4-DNP-DL-citrulline</td>
<td>N-2,4-DNP-DL-ethionine</td>
<td>N-2,4-DNP-DL-glutamic acid</td>
</tr>
<tr>
<td>Column: CHIRAL-HSA 100 x 4.0 mm Mobile phase: 15% 2-propanol in 10 mM sod.ph.b. pH 7.0 Detection: UV 210 nm Sample conc.: 0.1 mg/ml</td>
<td>Column: CHIRAL-HSA 100 x 4.0 mm Mobile phase: 15% 2-propanol in 10 mM sod.ph.b. pH 7.0 Detection: UV 210 nm Sample conc.: 0.1 mg/ml</td>
<td>Column: CHIRAL-AGP 100 x 4.0 mm Mobile phase: 1% 2-propanol in 10 mM sod.ph.b. pH 7.0 Detection: UV 210 nm Sample conc.: 0.1 mg/ml</td>
<td>Column: CHIRAL-HSA 100 x 4.0 mm Mobile phase: 15% 2-propanol in 10 mM sod.ph.b. pH 7.0 Detection: UV 210 nm Sample conc.: 0.1 mg/ml</td>
</tr>
<tr>
<td>Compound</td>
<td>Ref.</td>
<td>Column</td>
<td>Mobile phase</td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Meprolol</td>
<td></td>
<td>CHIRAL-CBH 100 x 4.0 mm</td>
<td>5% 2-propanol in 10 mM sod.ph.b ph 6.0 + 50 μM di-sodium EDTA</td>
</tr>
<tr>
<td>Mosapride (Ref. 134)</td>
<td></td>
<td>CHIRAL-AGP 100 x 4.0 mm</td>
<td>2.5% 2-propanol in 10 mM sod. phos.ph. buffer, pH 7.0</td>
</tr>
<tr>
<td>1-(1-Naphthyl)-ethylamine</td>
<td></td>
<td>CHIRAL-AGP 100 x 4.0 mm</td>
<td>2.5% 2-propanol in 10 mM sod. phos.ph. buffer, pH 7.0</td>
</tr>
<tr>
<td>Naproxen</td>
<td></td>
<td>CHIRAL-AGP 100 x 4.0 mm</td>
<td>25 mM sod.ph.b ph 7.0</td>
</tr>
<tr>
<td>Nefopam</td>
<td></td>
<td>CHIRAL-AGP 100 x 4.0 mm</td>
<td>1% 2-propanol in 10 mM sod.ac.b. ph 4.5 (total acetate conc. = 25 mM)</td>
</tr>
<tr>
<td>Nicotine (Ref. 93)</td>
<td></td>
<td>CHIRAL-AGP 100 x 4.0 mm</td>
<td>For conditions see reference no. 93</td>
</tr>
<tr>
<td>Nitrendipine</td>
<td></td>
<td>CHIRAL-AGP 100 x 4.0 mm</td>
<td>10% 2-propanol in 10 mM sod.ph.b ph 7.0</td>
</tr>
<tr>
<td>Norepinephrine</td>
<td></td>
<td>CHIRAL-CBH 100 x 4.0 mm</td>
<td>5% 2-propanol in 10 mM sod.ph.b ph 6.0 + 50 μM di-sodium EDTA</td>
</tr>
<tr>
<td>Normethanephine</td>
<td></td>
<td>CHIRAL-CBH 100 x 4.0 mm</td>
<td>5% 2-propanol in 10 mM sod.ph.b ph 6.0 + 50 μM di-sodium EDTA</td>
</tr>
<tr>
<td>Octopamine</td>
<td></td>
<td>CHIRAL-CBH 100 x 4.0 mm</td>
<td>5% 2-propanol in 10 mM sod.ph.b ph 6.0 + 50 μM di-sodium EDTA</td>
</tr>
<tr>
<td>Omeprazole (Ref. 144)</td>
<td></td>
<td>CHIRAL-AGP 100 x 4.0 mm</td>
<td>Mobile phase: 10% acetonitrile in 10 mM sod.ph.b ph 6.8</td>
</tr>
<tr>
<td>Omeprazole</td>
<td></td>
<td>CHIRAL-AGP 100 x 4.0 mm</td>
<td>Mobile phase: 10% acetonitrile in 10 mM sod.ph.b ph 6.8</td>
</tr>
<tr>
<td>Chemical Name</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxamnique (Ref. 34)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxazoline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxfendazole (Ref. 47)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxodipine (Ref. 118)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxprenolol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxybutynin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxyphencyclidine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxyphenonium (Ref. 48)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pamatolol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pargyline N-oxide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penthiobarbital</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentobarbitone (Ref. 128)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Warfarin

Column: CHIRAL-AGP 100 x 4.0 mm
Mobile phase: 10% 2-propanol in 10 mM sod ph.b. pH 7.0
Detection: UV 225 nm
Sample conc.: 0.02 mg/ml

Reference 19

Column: CHIRAL-AGP 100 x 4.0 mm
Mobile phase: 10% 2-propanol in 8 mM sod ph.b. pH 7.0
Flow: 0.9 ml/min
Detection: UV 220 nm

Reference 83

Column: CHIRAL-AGP 100 x 4.0 mm
Mobile phase: 1% 2-propanol in sod ph.b. pH 7.0
Flow: 0.9 ml/min
Detection: UV 220 nm

Reference 97

Column: CHIRAL-AGP 100 x 4.0 mm
Mobile phase: 10 mM sod ph.b. pH 4.0 with acetonitrile (100/15)
Flow: 1.0 ml/min
Detection: UV 220 nm

H 310/83 and H 309/40 (Ref. 147)

Column: CHIRAL-AGP 100 x 4.0 mm
Mobile phase: 10% acetonitrile in phosphate buffer, ionic strength I=0.01, pH 7.5
Temp.: 40 °C
References CHIRAL-AGP

1. Jörgen Hermansson
Direct liquid chromatographic resolution of racemic drugs using \(\alpha \)-acid glycoprotein as the chiral stationary phase
J. Chromatogr., 269 71 (1983)

2. Jörgen Hermansson
Liquid chromatographic resolution of racemic drugs using a chiral \(\alpha \)-acid glycoprotein column

3. Jörgen Hermansson, Mårit Eriksson and Olof Nyquist
Determination of R- and S-disopyramide in human plasma using a chiral \(\alpha \)-acid glycoprotein column

4. Jörgen Hermansson
Direct liquid chromatographic resolution of racemic drugs by means of \(\alpha \)-acid glycoprotein as the chiral complexing agent in the mobile phase

5. J. Lars G. Nilsson, Jörgen Hermansson, U. Hacksell and Staffan Sundell
Promethazine- resolution, absolute configuration and direct chromatographic separation of the enantiomers

6. Jörgen Hermansson
Resolution of racemic aminoalcohols (beta-blockers), amines and acids as enantiomeric derivatives using a chiral \(\alpha \)-acid glycoprotein column
J. Chromatogr., 325 379 (1985)

7. Jörgen Hermansson and Mårit Eriksson
Direct liquid chromatographic resolution of acidic drugs using a chiral \(\alpha \)-acid glycoprotein column

8. G. Schill et al.
Chiral separations of cationic and anionic drugs on an \(\alpha \)-acid glycoprotein-bonded stationary phase (EnantioPac). II. Influence of mobile phase additives and pH on chiral resolution and retention
J. Chromatogr., 365 73 (1986)

9. G. Schill et al.
Chiral separation of cationic drugs on an \(\alpha \)-acid glycoprotein bonded stationary phase

10. Jörgen Hermansson et al.
Enantioselective analysis of chloroquine and desethylchloroquine after oral administration of racemic chloroquine
Therapeutic Drug Monitoring 8 457 (1986)

11. Jörgen Hermansson et al.
Relationship between enantioselectivity and solute structure on a chiral \(\alpha \)-acid glycoprotein column
Chromatographia, 24 520 (1987)

Separation and quantitation of R- and S- atenolol in human plasma and urine using an \(\alpha \)-AGP column
Chirality, 1 209 (1989)

15. Jörgen Hermansson et al.
Comparison between two methods for the determination of the total and free R- and S-disopyramide in human plasma using an \(\alpha \)-acid glycoprotein column
J. Chromatogr., 494 143 (1989)

16. Jörgen Hermansson
Review: Enantiomeric separation of drugs and related compounds based on their interaction with \(\alpha \)-acid glycoprotein
Trends In Analytical Chemistry, 8 no.7 251 (1989)

17. A.M. Krstulovic et al.
Improved performance of the second generation \(\alpha \)-AGP column. Applications to the routine assay of plasma levels of alfuzosin hydrochloride
Chirality, 1 243 (1989)

18. B. Blessington et al.
Proposed primary reference methods for the determination of some commercially important chiral aryloxypropionate herbicides in both free acid and ester forms
J. Chromatogr., 483 349 (1989)

19. M. Lienne et al.
Direct enantiomeric separation of anticholinergic drugs derived from (+)-cyclohexyl (3- thienyl) glycolic acid on a novel \(\alpha \)-acid glycoprotein bonded chiral stationary phase (CHIRAL-AGP)

20. A. Walhagen
Coupled column chromatography-mass spectrometry. Thermo-spray liquid chromatographic- mass spectrometric and liquid chromatographic-tandem mass spectrometric analysis of metoprolol enantiomers in plasma using phase-system switching

21. K. Balmér et al.
Optimization of detection sensitivity for enantiomers of metoprolol on silica bonded \(\alpha \)-acid glycoprotein
J. Chromatogr., 477 107 (1989)

22. A. Walhagen et al.
Coupled-columns chromatography on immobilized protein phases for direct separation and determination of drug enantiomers in plasma
Enantioselective determination of metoprolol in plasma by liquid chromatography on a silica bonded α₁-acid glycoprotein column
J. Chromatogr., 500 629 (1990)

24. I. Wainer et al.
Determination of the enantiomers of verapamil and norverapamil in serum using coupled achiral-chiral high performance liquid chromatography

25. G. Schill et al.
Chiral separations of atropine and homatropine on an α₁-acid glycoprotein-bonded stationary phase
J. Chromatogr., 506 597 (1990)

26. G. Örn et al.
Direct HPLC-separation of d- and l- medetomidine hydrochloride by using an α₁-acid glycoprotein chiral column
J. Chromatogr., 506 627 (1990)

27. A. Shibukawa et al.
Steroselective determination of free warfarin concentration in protein binding equilibrium using direct sample injection and an on-line liquid chromatographic system
Analytical Chemistry, 62, no7 712 (1990)

28. M. Enquist and J. Hermansson
Influence of uncharged mobile phase additives on retention and enantioselectivity of chiral drugs using an α₁-acid glycoprotein column.
J. Chromatogr., 519 , 271 (1990)

29. M. Enquist and J. Hermansson
Separation of the enantiomers of β-receptor blocking agents and other cationic drugs using the CHIRAL-AGP column. Binding properties and characterization of immobilized AGP.

30. A. Rouhouse et al
Direct high-performance liquid chromatographic determination of the enantiomers of alfuzosin in plasma on a second generation of α₁-acid glycoprotein chiral stationary phase.
J. Chromatogr., 506, 601 (1990)

31. A.F. Fell et al
In vitro metabolism studies on oxamniquine and related compounds by chiral liquid chromatography.
J. Pharmaceutical & Biomedical Analysis, 7 no 12 1743 (1989)

32. Inger Hermansson and Jörgen Hermansson
Direct resolution of nonsteroidal antiinflammatory drugs on an α₁-acid glycoprotein column

33. Steen Honoré Hansen et al.
Synthesis of six metabolites and conjugates of naproxen and simultaneous assay of these and naproxen in biological fluids
Poster presentation, Analytikerdagarna, Lund, June 17-21, 1990

34. T.A.G. Noctor et al.
High performance liquid chromatographic resolution of oxamniquine enantiomers: Application to in vitro metabolism studies
Chirality, 2 269 (1990)

35. Jan Hasselström, Märit Engquist, Jörgen Hermansson, Rune Dahlquist
Enantioselective steady state kinetics of free disopyramide and dealkylated metabolite in man.

36. Sandor Görög et al.
α₁-Acid glycoprotein column in the high-performance liquid chromatographic analysis of some groups of chiral drugs.
J. of Pharmaceutical & Biomedical Analysis, 8 837 (1990)

37. Laurence E. Mather et al.
Disposition of mepivacaine and bupivacaine enantiomers in sheep
Br. J. of Anaesthesia, 67 (no.3), 239 (1991)

38. A.J. Rutten et al.
Cardiovascular effects and regional clearances of intravenous bupivacaine in sheep: enantiomeric analysis.
Br. J. of Anaesthesia, 67 (no.3), 247 (1991)

39. P. Delatour et al
Comparative enantioselectivity in the sulphoxidation of albenza in man, dogs and rats
Xenobiotica, 21, no 2 217 (1991)

40. P. Delatour et al
Chiral behaviour of the metabolite albenza sulphonide in sheep, goats and cattle
Research in Veterinary Science, 50 134 (1991)

41. G.W. Ley et al
Method development for chiral metabolism of doxazosin
Poster presentation, Second International Symposium on Pharmaceutical and Biomedical Analysis, York, June 1990

42. K.-J. Pettersson et al
Liquid chromatographic determination of the enantiomers of ibuprofen in plasma using a CHIRAL-AGP column

43. J.C. Nielsen et al
A double blind, placebo controlled, cross-over comparison of the analgesic effect of ibuprofen 400 mg and 800 mg on laser-induced pain

44. Brian J. Clark et al
Reversed-phase and chiral high-performance liquid chromatography assay of bupivacaine and its enantiomers in clinical samples after continuous extra-plural infusion
J.Chromatogr., 553, 383 (1991)

45. KE Ibrahim et al
Separation of chloroquine enantiomers by high-performance liquid chromatography
46. P Camilleri et al
Effect of deuterium oxide on the resolution of the optical isomers of ibuprofen on an alpha,-acid glycoprotein column
J. Chromatogr., 518, 277 (1990)

47. M Lienne et al
Direct resolution of anthelminthic drug enantiomers on Chiral-AGP protein-bonded chiral stationary phase

48. BF Drenth et al
Direct determination of the enantiomeric purity of oxyphenonium using chiral HPLC with post-column extraction detection
Chromatographia, 26, 281 (1988)

49. J. Kern
Chromatographic separation of the optical isomers of naproxen

50. A. Hedman et al
Digoxin-verapamil interaction: reduction of biliary but not of renal digoxin clearance in humans

51. O. Beck et al
Chiral analysis of methadone in patient plasma by high-performance liquid chromatography
J. Chromatogr., 570, 198 (1991)

52. Richard M.Gaskell and Brian Crooks
Practical strategy for the analytical separation of enantiomers by high-performance liquid chromatography
J. Chromatogr., 553, 357 (1991)

53. G.J. Furlonger et al
Design and application of chiral LC Studies for drug metabolism studies
Submitted for publication

54. Jan Trofast et al
Steric aspects of agonism and antagonism and beta-adrenoceptors: Synthesis of and pharmacological experiments with the enantiomers of Formoterol and their diasteromers
Chirality ,3, 443 (1991)

55. R. Gollamudi and Z.Feng
Chiral Resolution of a,a ’-Bis(3-(N,N-diethylcarbamoyl)-piperidino)-p-xylene, a novel antiplatelet compound
Chirality,3, 480 (1991)

56. P.Delatour et al
Chirality of the sulfoxide metabolites of fenbendazole and albendazole in sheep

57. P. Delatour et al
Chiral behaviour of the metabolite albendazole sulphoxide in sheep, goats and cattle

58. G. Geisslinger et al
Stereoselective high performance liquid chromatographic determination of flurbiprofen in human plasma
J. Chromatogr., 573, 163 (1992)

59. Emmanuelle Royer
Pharmacocinetique du Toltrazuril et de ses metabolites de S-oxydation chez le rat et le mouton; Enantiomerie du Sulfoxide Ecole nationale veterinaire de Lyon, THESE, 16, (1992)

60. J. Hermansson et al
Chiral HPLC separationsns of vinca alkaloid analogues on alpha,-acid glycoprotein and human serum albumin columns
J. Chromatogr. 609 163 (1992)

61. Anne-Francoise Aubry et al
Enantioselective chromatography of the antimalarial agents chloroquine, mefloquine and enpiroline on a alpha,- acid glycoprotein chiral stationary phase: evidence for a multiple-site chiral recognition mechanism
Chirality,4, 30 (1992)

62. J. Iredale et al
Determination of hydroxychloroquine and its major metabolites in plasma using sequential achiral-chiral high-performance liquid chromatography
J. Chromatogr., 573, 253 (1992)

63. P. Guinebault et al.
Plasma determination of the enantiomers of SL 84.0418, a new antihyperglycaemic drug, by HPLC on a chiral alpha,- AGP column
Chirality, 4, 116 (1992)

64. U. Norinder and J. Hermansson
Chiral separation of N-alkoalkylsuccinamides on an alpha,-acid glycoprotein column: quantitative structure-enantioselectivity relationship study
Chirality, 3, 422 (1991)

65. V. Ascalone et al
Determination of the enantiomers of SL 84.0418, a new anti-hyperglycaemic drug, in human plasma by means of a stereo-specific HPLC method
Poster presented at HPLC’92 in Baltimore (June 14-19)

66. L.A. Sly et al
Development of a chiral separation for Beraprost using an alpha,-acid glycoprotein column
Poster presented at HPLC’92 in Baltimore (June 14-19)

67. J.V. Andersen et al
Simultaneous determination of (R)- and (S)-naproxen and (R)- and (S)-6-O-desmethylnaproxen by high-performance liquid chromatography on a CHIRAL-AGP column
J. Chromatogr.,577, 362 (1992)

68. H. Fieger et al
Direct determination of the enantiomeric ratio of verapamil, its major metabolite norverapamil and gallopamil in plasma by chiral high performance liquid chromatography
J. Chromatogr.,575, 255 (1992)
69. E. Arvidsson et al
Retention processes on \(\alpha\)-acid glycoprotein-bonded stationary phase

70. B. Herényi et al
Chiral high-performance liquid chromatographic separations on an \(\alpha\)-acid glycoprotein column. II. Separation of the diastereomeric and enantiomeric analogues of vinpocetine(Cavinton)
J. Chromatogr., 592, 297 (1992)

71. D.R. Taylor et al
Chiral separations by high-performance liquid chromatography
J. Chromatographic Science, 30, 67 (1992)

72. N. Mörk et al
Stereoselective enzymatic hydrolysis of various ester prodrug of ibuprofen and flurbiprofen in human plasma
Pharmaceutical Research, 9 (no.4), 492 (1992)

73. J. Haginaka et al
Retention, enantioselectivity and enantiomeric elution order of propranolol and its ester derivatives on an alpha\(_{-}\)-acid glycoprotein-bonded column
Chromatographia, 33 (no.3/4), 127 (1992)

74. S. D. McAleer et al
Measurement of the (R)- and (S)-isomers of warfarin in patients undergoing anticoagulant therapy
Chirality, 4 (no.8) 488 (1992)

75. J.E. Drouin et al
Optimization of the mobile phase for the liquid chromatographic separation of modafinil optical isomers on a CHIRAL-AGP column
J. Chromatogr., 605 19 (1992)

76. A.M. Dyas
The chiral chromatographic separation of beta-adrenoceptor blocking drugs
J. Pharmaceutical & Biomedical Analysis, 10 (no. 6) 383 (1992)

77. S. Menzel-Soglowek et al
Variability of inversion of (R)-flurbiprofen in different species
J. of Pharmaceutical Sciences, 81(no.9) 888 (1992)

78. A.P. Beresford et al
Advantages of achiral h.p.l.c. as a preparative step for chiral analysis in biological samples and its use in toxicokinetic studies
Xenobiotica, 22 (no.7) 789 (1992)

79. G.J. Furlonger et al
Coupled-column chiral LC systems for drug metabolism studies
Poster presented at 3rd ISCD in Tubingen, October 1992

80. D. Haupt et al
Separation of (R)- and (S)-naproxen using micellar chromatography and an \(\alpha\)-acid glycoprotein column: application for chiral monitoring in human liver microsomes by coupled-column chromatography
J.Biochem. and Biophys. Methods, 24:4 273 (1992)

81. C.B. Ea
Plasma levels of trimipramine and metabolites in four patients: determination of the enantiomer concentrations of the hydroxy metabolites
Therapeutic Drug Monitoring, 14 380 (1992)

82. Z. Feng et al
Chiral separation of nipecotic acid amides
J. Chromatography, 609 187 (1992)

83. J.M. Evans et al
Separation of the enantiomers of some potassium channel activators using an \(\alpha\)-acid glycoprotein column
J. Chromatography, 623 163 (1992)

84. N. Schmidt et al
Stereoselective determination of the enantiomers of methadone in plasma using high-performance liquid chromatography
J.Chromatography. 583 195 (1992)

85. J. Hermansson et al
Characterization of a CHIRAL-AGP capillary column coupled to a micro sample-enrichment system with UV and electrospray mass spectrometric detection
J.Chromatogr. 631 79 (1993)

86. A.K. Rasimas et al
Determination of verapamil enantiomers in serum following racemate administration using HPLC

87. C.R. Lef et al
Liquid and high-pressure carbon dioxide chromatography of beta-blockers. Resolution of the enantiomers of nadolol
J. Chromatography, 539 55 (1991)

88. F.A. Maris et al
Applicability of new chiral stationary phases in the separation of racemic pharmaceutical compounds by high-performance liquid chromatography
J. Chromatography, 547 45 (1991)

89. H. Fieger et al
Enantioselective determination of hydroxychloroquine and its major metabolites in urine and the observation of a reversal in the (+)/(-)-hydroxychloroquine ratio
Chirality, 5(no.2) 65 (1993)

90. A-F. Aubry et al
An in vitro study of the stereoselective dissolution of (rac)-verapamil from two sustained release formulations
Chirality, 5(no.2) 84 (1993)

91. L.A. Sly et al
Isomeric separation of Beraprost sodium using an \(\alpha\)-acid glycoprotein column
J. Chromatography, 641 249 (1993)

92. D. Haupt et al
Enantiomeric separations of remoxipride, propranolol and trimipramine on CHIRAL-AGP using micellar chromatography and anionic additives
Chirality, 5 224 (1993)
93. D. Demetriou et al
HPLC separation of the enantiomers of nicotine and nicotine-like compounds
Chirality, 5 300 (1993)

94. I. Fitos et al
Stereoselective distribution of acenocoumarol enantiomers in human plasma
Chirality, 5 346 (1993)

95. H. Huherfuss et al
Enantioselective and nonenantioselective degradation of organic pollutants in the marine ecosystem
Chirality, 5 393 (1993)

96. S. Menzel et al
Stereoselectivity of biliary excretion of 2-arylpropionates in rats
Chirality, 5 422 (1993)

97. Y. Gouraud et al
Preparative direct liquid chromatographic resolution of RU 48159 racemate (analgesic drug)
Poster presented at Fourth International Symposium on Chiral Discrimination, Sept. 1993, Montreal, Canada

98. A. Doroudian et al
Sensitive high-performance liquid chromatographic method for direct separation of labetalol stereoisomers in biological fluids using an \(\alpha \)-acid glycoprotein stationary phase

99. J. Xaver de Fries et al
Direct column liquid chromatographic enantiomer separation of the coumarin anticoagulants phenprocoumon, warfarin, acenocoumarol and metabolites on an \(\alpha \)-acid glycoprotein chiral stationary phase
J. Chromatography, 644 315 (1993)

100. J. Hermansson et al
Dynamic modification of the chiral bonding properties of a CHIRAL-AGP column by organic and inorganic additives. Separation of enantiomers of anti-inflammatory drugs
J. Chromatography, 666 181 (1994)

101. J. Hermansson et al
Optimization of the separation of enantiomers of basic drugs. Retention mechanisms and dynamic modification of the chiral bonding properties on an \(\alpha \)-acid glycoprotein column

102. May Y.K. Ho et al.
Pre-treatment of chiral \(\alpha \)-AGP column with triethylamine significantly improves detection sensitivity of enantiomeric leucotriene antagonist

103. G. Blaschke et al.
Evaluation of the stereoselective metabolism of the chiral analgesic drug etodolac by high-performance liquid chromatography
J. Chromatogr., 621 199 (1993)

104. A. Suzuki et al.
J. Chromatogr., 617 279 (1993)

105. K. Kristensen et al.
Enantioselective high-performance liquid chromatographic method for the determination of methadone in serum using an AGP and a CN column as chiral and analytical column, respectively.
J. Chromatogr., 666 283 (1994)

106. A. P. Watt et al.
Resolution of synthetic (+)- and (-)-epitabidine by chiral high performance liquid chromatography and identification of the natural isomer.

107. L. Wallen et al.
High-performance liquid chromatographic method for the enantioselective analysis of mefloquine in plasma and urine.
J. Chromatogr., 655 153 (1994)

108. C. Pepper et al.
Racemization of drug enantiomers by benzylic proton abstraction at physiological pH
Chirality, 6 400 (1994)

109. E. Benoit et al.
Effect of cytochrome P-450 1A induction on enantioselective metabolism and pharmacokinetics of an arytrifluoromethyl sulfide in the rat
Chirality, 6 372 (1994)

110. J.X. de Vries et al
The analysis of ibuprofen enantiomers in human plasma and urine by high performance liquid chromatography on an \(\alpha \)-acid glycoprotein chiral stationary phase
J. Liquid Chromatography, 17(10) 2127 (1994)

111. S.A. Corlett et al
Enantiomeric separation of R- and S- ifosfamide and their determination in serum from clinical subjects
J. Chromatogr., 654 152 (1994)

112. A. Nasal et al
Quantitative relationships between the structure of \(\beta \)-adrenolytic and antihistamine drugs and their retention on an \(\alpha \)-acid glycoprotein HPLC column
Biomedical Chromatography, 8 125 (1994)

113. W.J. Wechter et al
Chiral pharmacokinetics of Rac-flurbiprofen and pharmacodynamics of anabolic bone response in the normal rat
Chirality, 6 457 (1994)

114. S. Surapaneni et al
A preliminary pharmacokinetic study of the enantiomers of the terfenadine acid metabolite in humans
Chirality, 6 479 (1994)
115. N. Schmidt et al
Stereoselective pharmacokinetics of methadone in beagle dogs
Chirality, 6 492 (1994)

116. Th. Jira et al
Synthese und HPLC-Trennung chiraler 1,3,4-Thia-diazine und
1,3,4-Selediazine
Pharmazie, 49 401 (1994)

117. M.H. Mills et al
Determination of ketorolac enantiomers in plasma using
enantioselective liquid chromatography on an α,β-acid glycoprotein
chiral stationary phase and ultraviolet detection
J. Chromatography B, 658 177 (1994)

118. V. Chapeau et al
High-performance liquid chromatographic determination of
oxodipine enantiomers, a new 1,4-dihydro-pyridine, applied to
stereoselectivity studies in man and dog

119. F. Li et al
Determination of the enantiomers of bunolol in human urine by
high-performance liquid chromatography on a CHIRAL-AGP
stationary phase and identification of their metabolites by gas
chromatography-mass spectrometry

120. Y. Wei et al.
A HPLC method for the separation and quantification of the
enantiomers of hydroxychloroquine and its three major metabolites

121. D.J. Jones et al.
Detection of ketorolac enantiomers in human plasma using
enantioselective liquid chromatography

122. P. Hayball et al.
Market enantioselective protein binding in humans of ketorolac
in vitro: Elucidation of enantiomer unbound fractions following
facile synthesis and direct chiral HPLC resolution of tritium-
labelled ketorolac
Chirality, 6 662 (1994)

123. D. Haupt et al.
Retention model for the resolved enantiomers of felodipine on
Chiral-AGP using micellar mobile phases
Chirality 7 23 (1995)

124. C. Pepper et al.
Enantioselectivity of aromatase inhibitors: substituted 3-(4-
amino phenyl)pyrrolidine-2,5-diones
Chirality 7 376 (1995)

125. I. Fitos et al
Separation of enantiomers of benzodiazepines on the CHIRAL-
AGP column

126. C. Rudolfi et al
Determination of the stereoselective aspects in in-vitro and in-
vivo metabolism of the analgesic mep-tazinol by high-performance
liquid chromatography

127. B.M. Bunton et al
Chiral separation of MDL 73,005EF enantiomers using an α,β-
acid glycoprotein column

128. Jiu Li Huang et al
High-performance liquid chromatographic determination of
thiopentone enantiomers in sheep plasma

129. P. Mangoni et al
Sterespecific high-performance liquid chromatographic
determination of an S(−)-benzopyran methyl ester derivative
(CG5 068), its (-)-carboxylic acid metabolite (CG5 5461)
and the related (+)-enantiomer (CG5 54228) in human and dog
plasma

130. G. Tybring et al.
Enantioselective Determination of Mianserin and Its Desmethyl
Metabolite in Plasma During Treatment of depressed Japanese
Patients

131. A. Carabaza et al.
Stereoselective Metabolic Pathways of Ketoprofen in the Rat:
Incorporation Into Triacylglycerols and Enantiomeric Inversion.
CHIRALITY 8:163-172(1996)

132. M. Dahl et al
Stereoselective disposition of mianserin is related to debrisoquin
hydroxylation polymorphism

133. G. Tybring et al
Enantioselective hydroxylation of omeprazole catalyzed by
CYP2C19in Swedish healthy subjects.
In manuscript

134. A. Karlsson et al.
Enantiomeric Resolution on CHIRAL-AGP Using Experimental
Design.
Postar, Analytikerdagarna, Stockholm June 1996

135. A.Trute et al
Separation of Rosmarinic Acid Enantiomers by Three Different
Chromatographic Methods (HPLC, CE, GC) and the Determination
of Rosmarinic Acid in Hedera helix L.
Phytochemical Analysis, vol 7, 204-208 (1996)

136. D. J. Jones et al
Determination of (R)(+)- and (S)(−)-isomers of thiopentone in
plasma by chiral high-performance liquid chromatography
137. G. Geisslinger et al
Stereospecific determination of tiaprofenic acid in plasma:
problems with drug degradation

138. R. Kalisz and al
Quantitative structure-retention relationships in the examination
of the topography of the binding site of antihistamine drugs on a
α_1-acid glycoprotein

139. G. Stagni and al
Simultaneous analysis of verapamil and norverapamil
enantiomers in human plasma by high-performance liquid
chromatography

140. S.A.C. Corlett and al
High-performance liquid chromatographic determination of the
enantiomers of cyclophosphamide in serum

141. A. A. Vletter and al
High-performance liquid chromatographic assay of mepivacaine
enantiomers in human plasma in the nanogram per milliliter
range

142. J-O Svensson and al
Determination of ketamine and norketamine enantiomers in
plasma by solid-phase extraction and high-performance liquid
chromatography

143. K. Kristensen and al
Stereoselective Pharmacokinetics of Methadone in Chronic Pain
Patients
Therapeutic Drug Monitoring 18:221-227 (1996)

144. A. Karlsson and al
Optimisation of Chiral Separation of Omeprazole and One of Its
Metabolites on Immobilized α_1-Acid Glycoprotein Using
Chromatographia vol. 44, no. 1/2, January (1997)

145. D. Haupt
Determination of citalopram enantiomers in human plasma by
liquid chromatographic separation on a Chiral-AGP column

146. A. Nyström and al
Enantiomeric resolution on Chiral-AGP with the aid of experi-
mental design.Unusual effects of mobile phase pH and column
temperature

147. J. Gottfries and al
Influence of chromatographic descriptors on enantiomeric
resolution of a dihydropyridine and structurally related compounds

148. A. Ceccato and al
Direct liquid chromatographic enantioseparation of sotalol and
other β-blockers using an α_1-acid glycoprotein-based chiral
stationary phase

149. G. Fornasini and al
Preliminary Pharmacokinetic Study of Ibuprofen Enantiomers
After Administration of a New Oral Formulation (Ibuprofen
Arginine) to Healthy Male Volunteers

150. J.S. Millership and al
Topical Administration of Racemic Ibuprofen
CHIRALITY 9:313-316 (1997)

151. I. Yokoyama and al
Simultaneous enantiomeric determination of a gastroprokinetic
agent mosapride citrate and its metabolite in plasma using α_1-
acid glycoprotein HPLC column

152. M. Fornalsson and al
Quantification of oxybutynin and its N-desethyl metabolite in
plasma using LC-MS
Poster. Analytikerdagarna, Stockholm June 1996

153. I. Abraham and al
Simultaneous analysis of lignocaine and bupivacaine enanti-
omers in plasma by high-performance liquid chromatography

154. J. Luksa and al
Pharmacokinetic behaviour of R-(++)- and S-(--)-amlodipine after
single enantiomer administration

155. A. Karlsson and al
Enantiomeric separation of amino alcohols on protein phases -
a comparative study
Poster presented at HPLC’98 in St.Louis, May 1998

156. A. Nyström and al
The use of different organic modifiers to control theretention
order of enantiomers on CHIRAL-AGP
Poster presented at HPLC’98 in St.Louis, May 1998

157. K. Öhlén and al
Simultaneous separation of verapamil and norverapamil on
CHIRAL-AGP using experimental design
Poster presented at HPLC’98 in St.Louis, May 1998

References CHIRAL-CBH

1. P. Erlandsson and al
Immobilized cellulase (CBH 1) as a chiral stationary phase for
direct resolution of enantiomers
2. I. Marle et al
Separation of enantiomers using cellulase (CBH I) silica as a chiral stationary phase
J. Chromatogr., 586 23 (1991)

3. I. Marle et al
Chiral stationary phases based on intact and fragmented cellobiohydrolase I immobilized on silica

4. J. Hermansson et al
Resolution of racemic drugs on a new chiral column based on silica immobilized CBH. Characterization of the basic properties of the column

5. D.J. Mayo et al
Direct chiral resolution of the drug, 15-deoxyspergualin, using a cellobiohydrolase liquid chromatographic column
J. Pharm, Biomed. Anal., In press

References CHIRAL-HSA

1. J. Hermansson et al
Chiral HPLC separations of vinca alkaloid analogues on alpha, -acid glycoprotein and human serum albumin columns

2. Peter J. Hayball
Influence of octanoic acid on the reversible protein binding of ketorolac enantiomers to human serum albumin (HSA): comparative liquid chromatographic studies using a HSA chiral stationary phase

3. I Hermansson et al
Resolution of enantiomers of amino acid derivatives on chiral protein columns
Poster presented at the 5th ISCD in Stockholm, September 25-28, 1994
Chiral Column Ordering Guide

Chiral-AGP

<table>
<thead>
<tr>
<th>Cat.No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT-20054</td>
<td>Chiral-AGP, 4.0 x 50mm, 5µm</td>
</tr>
<tr>
<td>CT-20104</td>
<td>Chiral-AGP, 4.0 x 100mm, 5µm</td>
</tr>
<tr>
<td>CT-20154</td>
<td>Chiral-AGP, 4.0 x 150mm, 5µm</td>
</tr>
<tr>
<td>CT-20103</td>
<td>Chiral-AGP, 3.0 x 100mm, 5µm</td>
</tr>
<tr>
<td>CT-20153</td>
<td>Chiral-AGP, 3.0 x 150mm, 5µm</td>
</tr>
<tr>
<td>CT-20052</td>
<td>Chiral-AGP, 2.0 x 50mm, 5µm</td>
</tr>
<tr>
<td>CT-20102</td>
<td>Chiral-AGP, 2.0 x 100mm, 5µm</td>
</tr>
<tr>
<td>CT-20152</td>
<td>Chiral-AGP, 2.0 x 150mm, 5µm</td>
</tr>
<tr>
<td>CT-201010</td>
<td>Chiral-AGP, 10.0 x 100mm, 5µm</td>
</tr>
<tr>
<td>CT-201510</td>
<td>Chiral-AGP, 10.0 x 150mm, 5µm</td>
</tr>
<tr>
<td>CT-200122</td>
<td>Chiral-AGP, 2.0 x 10mm, Guard cart, 2/pk</td>
</tr>
<tr>
<td>CT-200132</td>
<td>Chiral-AGP, 3.0 x 10mm, Guard cart, 2/pk</td>
</tr>
</tbody>
</table>

Chiral-CBH

<table>
<thead>
<tr>
<th>Cat.No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT-25054</td>
<td>Chiral-CBH, 4.0 x 50mm, 5µm</td>
</tr>
<tr>
<td>CT-25104</td>
<td>Chiral-CBH, 4.0 x 100mm, 5µm</td>
</tr>
<tr>
<td>CT-25154</td>
<td>Chiral-CBH, 4.0 x 150mm, 5µm</td>
</tr>
<tr>
<td>CT-25103</td>
<td>Chiral-CBH, 3.0 x 100mm, 5µm</td>
</tr>
<tr>
<td>CT-25153</td>
<td>Chiral-CBH, 3.0 x 150mm, 5µm</td>
</tr>
<tr>
<td>CT-25052</td>
<td>Chiral-CBH, 2.0 x 50mm, 5µm</td>
</tr>
<tr>
<td>CT-25102</td>
<td>Chiral-CBH, 2.0 x 100mm, 5µm</td>
</tr>
<tr>
<td>CT-25152</td>
<td>Chiral-CBH, 2.0 x 150mm, 5µm</td>
</tr>
<tr>
<td>CT-251010</td>
<td>Chiral-CBH, 10.0 x 100mm, 5µm</td>
</tr>
<tr>
<td>CT-251510</td>
<td>Chiral-CBH, 10.0 x 150mm, 5µm</td>
</tr>
<tr>
<td>CT-250122</td>
<td>Chiral-CBH, 2.0 x 10mm, Guard cart, 2/pk</td>
</tr>
<tr>
<td>CT-250132</td>
<td>Chiral-CBH, 3.0 x 10mm, Guard cart, 2/pk</td>
</tr>
</tbody>
</table>

Chiral-HSA

<table>
<thead>
<tr>
<th>Cat.No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT-29054</td>
<td>Chiral-HSA, 4.0 x 50mm, 5µm</td>
</tr>
<tr>
<td>CT-29104</td>
<td>Chiral-HSA, 4.0 x 100mm, 5µm</td>
</tr>
<tr>
<td>CT-29154</td>
<td>Chiral-HSA, 4.0 x 150mm, 5µm</td>
</tr>
<tr>
<td>CT-29103</td>
<td>Chiral-HSA, 3.0 x 100mm, 5µm</td>
</tr>
<tr>
<td>CT-29153</td>
<td>Chiral-HSA, 3.0 x 150mm, 5µm</td>
</tr>
<tr>
<td>CT-29052</td>
<td>Chiral-HSA, 2.0 x 50mm, 5µm</td>
</tr>
<tr>
<td>CT-29102</td>
<td>Chiral-HSA, 2.0 x 100mm, 5µm</td>
</tr>
<tr>
<td>CT-29152</td>
<td>Chiral-HSA, 2.0 x 150mm, 5µm</td>
</tr>
<tr>
<td>CT-291010</td>
<td>Chiral-HSA, 10.0 x 100mm, 5µm</td>
</tr>
<tr>
<td>CT-291510</td>
<td>Chiral-HSA, 10.0 x 150mm, 5µm</td>
</tr>
<tr>
<td>CT-290122</td>
<td>Chiral-HSA, 2.0 x 10mm, Guard cart, 2/pk</td>
</tr>
<tr>
<td>CT-290132</td>
<td>Chiral-HSA, 3.0 x 10mm, Guard cart, 2/pk</td>
</tr>
</tbody>
</table>

Accessories

<table>
<thead>
<tr>
<th>Cat.No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>731441</td>
<td>Guard cartridge holder</td>
</tr>
</tbody>
</table>