Chiral AGP

ChromTech

Schematic drawing of α₁-acid glycoprotein (AGP)

Characteristics

Peptide chain:	183 aa
Carbohydrate content:	45%
Molecular weight:	40000
Isoelectric point (pl)	2.7

The AGP column has a unique property!

The chiral bonding properties of the stationary phase can be changed dynamically.

Enantioselectivity can be <u>induced</u> and <u>improved</u> by simple changes of the mobile phase composition.

Optimization of enantioselectivity and retention

• Buffer

- concentration
- nature

Charged modifier

- nature
- concentration

Most important tool in method development

Net charge of AGP at different pH

Increasing net negative charge of AGP at higher pH

= pH-range used in chromatography

pl = isoelectric point of AGP, i.e. the pH(2.7) where the protein has a net charge of zero.

pH effects - strong acids

Separation of 2-phenoxypropionic acid at different pH

pH effects - propranolol

Another important tool in method development on CHIRAL-AGP

Nature and concentration of uncharged organic modifier

2-propanol, 1-propanol

acetonitrile

ethanol, methanol etc.

Influence of uncharged modifier concentration on retention and enantioselectivity

Analyte: Methylphenylcyanoacetic acid ethyl ester

Enantioselectivity

Retention

Effect of organic modifier character on enantioselectivity

Influence of the type of organic modifier on the enantioselective retention of clevidipine

Column: CHIRAL-AGP 150x4.0 mm

Mobile phase: Organic modifier in 25 mM phosphate buffer pH 7.0

From A. Karlsson et al in Chromatographia, vol.53 (2001) 135-139

Another important tool in method development on CHIRAL-AGP:

Nature and concentration of buffer

Acetate Phosphate Citrate Tris Formate etc.

Influence of the buffer conc. on resolution and retention of the enantiomers of naproxen

buffer pH 7.0

0.05 M Sodium phosph. buffer pH 7.0

Influence of acetate concentration on retention and enantioselectivity of propranolol

Column: CHIRAL-AGP 100x4.0 mm Mobile phase: 0.5 % 2-propanol in acetate buffer pH 4.1

Acetate mM	k´ 1	k´2	α
12 25 96	5.73 6.54 7.04	7.29 8.79 10.7	1.27 1.34 1.52
30	1.04	10.7	1.32

The type and concentration of buffer is important when developing methods for MS-detection

Methods based on phosphate buffers or other nonvolatile buffers can easily be transformed to MS compatible methods by changing to ammonium acetate or ammonium formate buffers.

Rapid separation of acidic compounds using MS-compatible conditions

10 mM amm.acetate Column: CHIRAL-AGP 50x2.0 mm

10 mM amm.acetate

1% CH₃CN in 10 mM amm.acetate Charged organic modifiers can be an important tool in method development. They have the most dramatic effects on the enantioselectivity and the retention.

Examples of modifiers:

Cationic: N,N-dimethyloctylamine (DMOA) and other amines

Anionic: Hexanoic- and octanoic acid

Influence of DMOA concentration on the enantioselectivity of naproxen

Clopidogrel

Column: CHIRAL-AGP 100x4.0 mm

Mobile ph. 16% acetonitrile and 1 mM N,N- dimethyloctylamine(DMOA) In 10 mM ammonium acetate pH 5.5

Influence of the concentration of an anionic modifier (octanoic acid) on the enantioselectivity of atropine

Simple method development strategy

Method development CHIRAL-AGP

Characterize your sample

Choose the appropriate method development scheme where you will find the starting mobile phase

Compound type	Starting mobile phase
Hydrophobic amine	10 mM ammonium or sodium acetate buffer pH 4.5
Hydrophilic amine	5% 2-propanol in 10 mM sodium phosphate buffer pH 7.0
Weak acid or non- protolyte	5% 2-propanol in 10 mM sodium phosphate buffer pH 7.0
Strong acid	10 mM sodium phosphate buffer pH 7.0

If you have characterized your compound as a hydrophobic amine follow the scheme below:

75,0 **blocking agent Isradipine** mAbs Н 60**.**0 H₃C CH3 H₃COOC COOCH(CH₃)₂ 45,0 30,0 Column: CHIRAL-AGP 100 x 4.0 mm Mobile phase: 15% 2-propanol in 30 15.0 mM phosphate buffer pH=6.8 Detection: UV 225 nm min Sample conc.: 0.02 mg/ml -2.0 -0.0 ы. С 10.0

Separation of the calcium channel

Column: CHIRAL-AGP 100x4.0 mm Mobile ph.: 5% 2-propanol in 10 mM phosph. buffer pH 7.0

J. Chromatogr., A, <u>844</u>, 171 (1999) R.C. Williams et al.

Separation of the enantiomers

of the antiulcer drug omeprazole

Column: CHIRAL-AGP 100 x 4.0 mm

Mobile phase: 10% acetonitrile in 10 mM sodium phosphate buffer pH=6.5

Detection: UV 210 nm

Sample conc.: 0.02 mg/ml

Separation of the enantiomers of the

anticholinergic drug proglumide

Column: CHIRAL-AGP 100 x 4.0 mm

Mobile phase: 5% 2-propanol in 10 mM sodium phosphate buffer pH=6.0

Detection: UV 225 nm

Sample conc.: 0.02 mg/ml

Separation of the enantiomers of clenbuterol

Column: CHIRAL-AGP 100 x 4.0 mm

Mobile phase: 1% 2-propanol in 10 mM sodium acetate buffer pH=5.0(total acetate concentration 15 mM)

Detection: UV 225 nm

Sample: 0.02 mg/ml

Separation of the enantiomers of remoxipride

Column: CHIRAL-AGP 100 x 4.0 mm

Mobile phase: 30 mM sodium acetate buffer pH=4.0(total acetate concentration 170 mM)

Detection: UV 210 nm

Sample: 0.02 mg/ml

Stability study of the CHIRAL-AGP column

Sample: Bumadizon

Mobile phase: 10% 2-propanol in 10 mM ph. b. pH 6.0

30.5 liters of mobile phase

2030 samples have been injected during the study

Guard column exchanged after 7.5 liters of mobile phase, corresponding to 147500 column volumes.

Determination of enantiomeric purity of disopyramide using the CHIRAL-AGP column

Purity determination of (+) - mepivacine

Chiral analysis of methadone enantiomers in patient plasma

Column: CHIRAL-AGP 100 x 4.0 mm Mobile phase: 16% acetonitrile in 10 mM potassium phosphate buffer pH=6.6 Flow rate: 0.7 ml/min Detection: UV 212 nm

The AGP column most likely has the broadest applicability of all chiral columns available. It separates amines, acids, nonprotolytes.

Solutes are retained by:

- ionic bonding
- hydrophobic interaction
- hydrogen bonding

The enantioselectivity and the retention can be regulated in many different ways:

- a) pH
- b) Buffer (nature and concentration)
- c) Uncharged modifier (nature and concentration)
- d) Charged modifier (nature and concentration)

Simple method development