

Managing Method Transfer in the Pharmaceutical Laboratory

Arnie Aistars, Ph.D. Consumables Business Development

©2015 Waters Corporation

1

THE SCIENCE OF WHAT'S POSSIBLE.

Agenda

- USP <621> Chromatography Change Update
 - Taking advantage of the change
 - Examples
- Strategy for Successful Method Transfer
 - Prevention
 - Troubleshooting
 - Sources of Contamination
- Method Transfer Principle
- Summary

USP <621> Chromatography Defines "Allowable Adjustments"

- Adjustments to a USP method may be made to meet system suitability requirements
- Verification tests must be performed after changes
 - Full re-validation not required
- Must use the same L-designation of column
- Isocratic hold or dwell volume adjustments are allowed

Order Information | Privacy | Validation Protocol | License Agreement | Copyright @2014 The U.S. Pharmacopeial Convention. All Rights Reserved

USP 37-NF 32 through First Supplement - August 1, 2014

Waters THE SCIENCE OF WHAT'S POSSIBLE.

Variable	USP 36-NF 31	USP 37-NF 32 Through first supplement		
		Isocratic	Gradient	
Particle Size	-50%	L/dp Ratio Constant	No changes allowed	
Column Length	±70%	or N: -25 to + 50%	No changes allowed	
Flow Rate	F2=F1 (d2 ² /d1 ²) and ±50%	F2=F1 x[(dc2 ² x dp1)/dc1 ² x dp2)] and ±50%	Not applicable	
Column ID	Any allowed if linear velocity is constant	Any allowed if linear velocity is constant	No changes allowed	
Injection Volume	Any reduction consistent with precision and detection limits; no increase permitted	-	Can be adjusted as consistent with precision and detection limits	
Column Temperature	±10%	±10%	±10%	
Mobile Phase pH	±0.2 unit	±0.2 unit	±0.2 unit	

Scaling Existing Separations

Waters THE SCIENCE OF WHAT'S POSSIBLE."

Length	Column	Particle Size	Relative Values					
(<i>L</i> , mm)	Diameter (<i>dc</i> , mm)	(<i>dp</i> , μ m)	L/dp	F	N	Pressure	Run Time	
250	4.6	10	25,000	0.5	0.8	0.2	3.3	
150	4.6	5	30,000	1.0	1.0	1.0	1.0	
150	2.1	5	30,000	0.2	1.0	1.0	1.0	
100	4.6	3.5	28,600	1.4	1.0	1.9	0.5	
100	2.1	3.5	28,600	0.3	1.0	1.9	0.5	
75	4.6	2.5	30,000	2.0	1.0	4.0	0.3	
75	2.1	2.5	30,000	0.4	1.0	4.0	0.3	
50	4.6	1.7	29,400	2.9	1.0	8.5	0.1	
50	2.1	1.7	29,400	0.6	1.0	8.5	0.1	

For example, if a monograph specifies a 150-mm × 4.6-mm; 5-µm column operated at 1.5 mL/min, the same separation may be expected with a 75-mm × 2.1-mm; 2.5-µm column operated at 1.5 mL/min × 0.4 = 0.6 mL/min, along with a pressure increase of about four times and a reduction in run time to about 30% of the original.

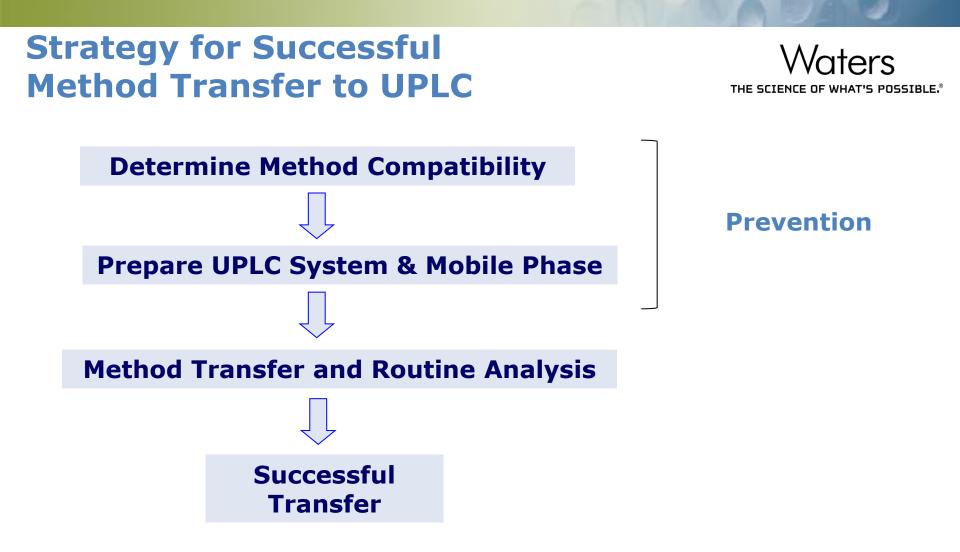
■1S (USP37

Taking Advantage of 'Allowable Adjustments' in USP <621>

Isocratic Methods	 Improve analysis speed and quality with UPLC and sub-2-µm columns
	-Improve methods with CORTECS 2.7 µm or 2.5 µm XP columns on HPLC systems
	-No re-validation required
Gradient Methods	- Any change requires re-validation
	 Fully optimize methods using sub-2-µm particles and UPLC
	 Develop better methods faster with ACQUITY QDa mass detector
System	 Future-proof the lab: Both HPLC and UPLC methods can be run on the ACQUITY UPLC H-Class system
Software	- ACQUITY Columns Calculator for proper transfers
	 Streamline verification and validation testing with Empower Method Validation Manager

Agenda

- USP <621> Chromatography Change Update
 - Taking advantage of the change
 - Examples


Strategy for Successful Method Transfer

- Prevention
- Troubleshooting
- Sources of Contamination
- Method Transfer Principle
- Summary

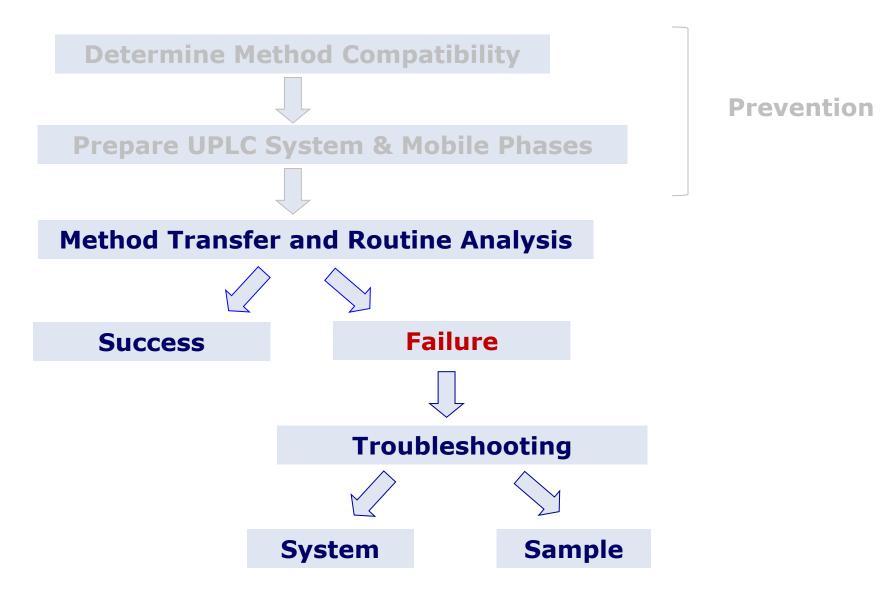
USP Compendial Methods: Potential Issues

- Mobile phase
 - High buffer salt concentration in mobile phase
 - High concentrations of modifiers (phosphoric acid, TEA etc.)
 - pH may be close to the limits of traditional column packing materials
- Method
 - Not always an optimized method
- Sample
 - Complex formulations: tablets, suspensions, ointments
 - Minimal, inadequate sample preparation
 - New excipients may not be compatible with USP method
 - Sample may not be fully soluble in diluent/mobile phase
 - Methods (often isocratic) may not elute all sample components
 - API, related substances, formulation excipients

Determining UPLC Method Compatibility

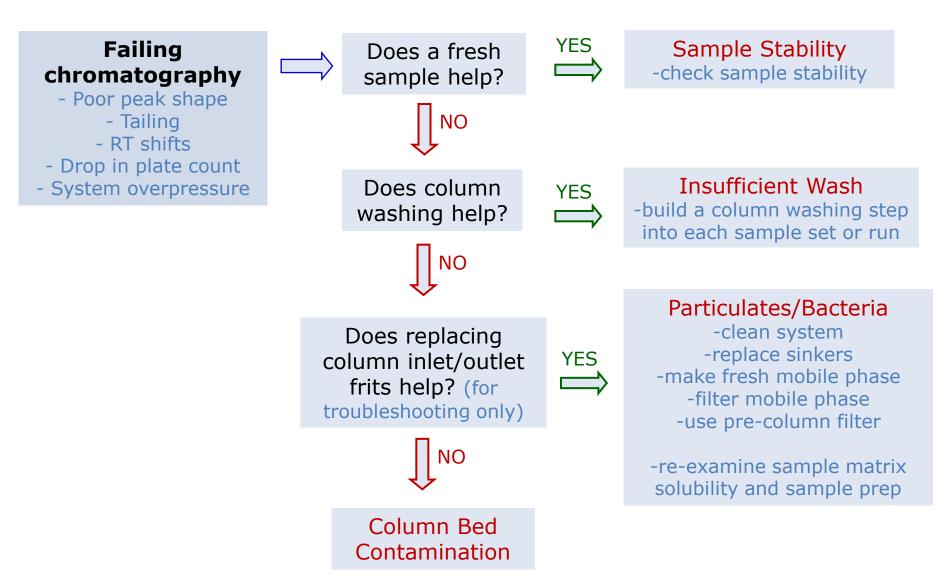
- Did the separation ever work well on an HPLC system?
 - Check buffer salt solubility with bench top experiment
- Does the HPLC method properly elute ALL excipients as well as the API and related substances?
 - Look at the properties of formulation components and their compatibility with the original USP method
 - Solubility in diluent and mobile phase
 - Stability (temperature, pH)
 - Modifications to sample preparation or method MAY be required, to prevent sample build-up on column

Waters THE SCIENCE OF WHAT'S POSSIBLE.

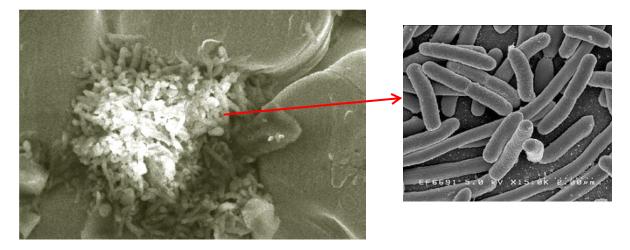

System Preparation and Mobile Phase

System

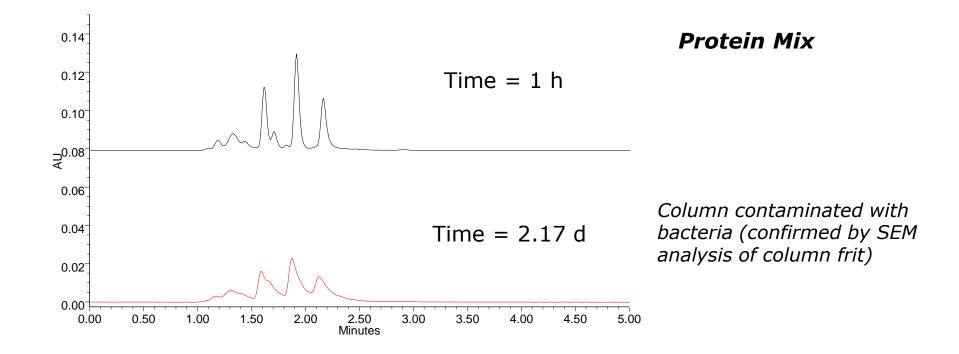
- Ensure the system has been cleaned regularly
- Sonicate or replace solvent filters to ensure cleanliness
 - Sinkers are significant source of bacteria
- Run a system performance standard to ensure system is in proper working condition
- Mobile Phase
 - Prepare fresh mobile phase
 - Use high quality, branded mobile phase solvents
 - Use high purity mobile phase buffers and reagents
 - Consider filtering or purchasing pre-filtered mobile phase solvents
 - Ensure that the mobile phase pH is compatible with the column


Strategy for Successful Method Transfer

Quick Troubleshooting

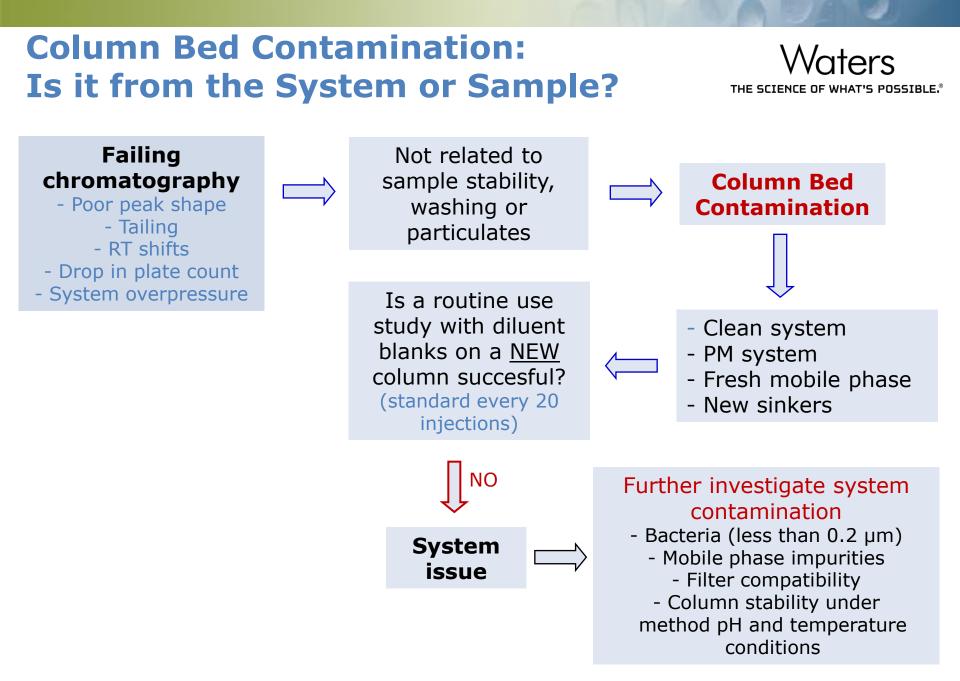

THE SCIENCE OF WHAT'S POSSIBLE.

Bacterial Contamination


- Bacteria in the system is a common cause of column failure
- Microbial build-up occurs in all systems running aqueous mobile phase
- Does not only occur at neutral pH
- 15 minutes is all it takes when conditions are right

SEM: column inlet frit, inlet side

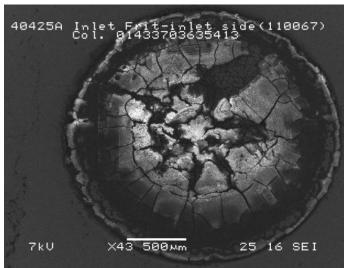
Effect of Bacterial Contamination on Chromatography


Conditions: 25mM sodium phosphate, 150 mM sodium chloride, pH 6.8, 0.4 mL/min, Injection vol: 4 μ L, Wavelength: 280 nm

Preventing Bacterial Contamination

Tips

- Replace sinkers (high source of bacteria)
- Prepare mobile phase fresh daily
- Pre-mix isocratic mobile phase with organic solvents
- Add starting % organic to aqueous mobile phases and adjust the gradient accordingly
- Flush the system regularly (with column removed) using a series of water/acid/organic washes to eliminate microbial growth.
 - See "Controlling Contamination in UltraPerformance LC[®]/MS and HPLC/MS Systems" PN 715001307
- Do NOT perform a hot water wash: this will worsen contamination

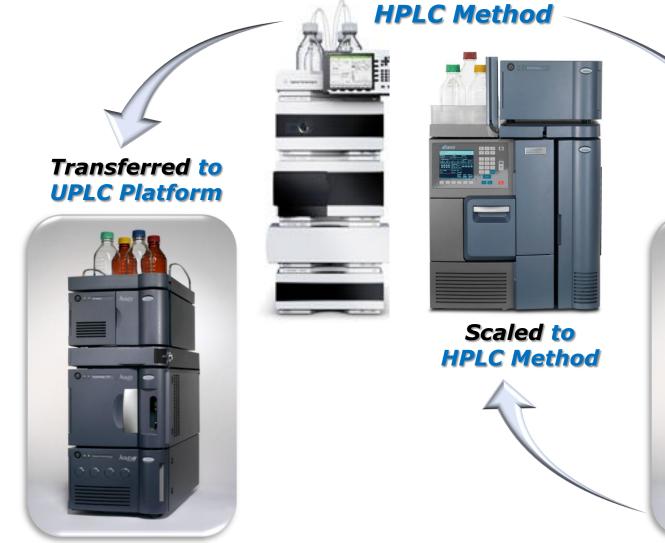

Preventing System-related Column Bed Contamination

Tips

- Prevent bacterial growth in system
- Use high quality, high purity reagents for mobile phase
- Consider using a VanGuard pre-column
- Ensure that the column being used is stable at the pH and temperature specified in the method
- Check chemical compatibility of filters (sample/mobile phase) with the solvents being used

Polysulphone material from filter membranes plugging inlet frit

Agenda

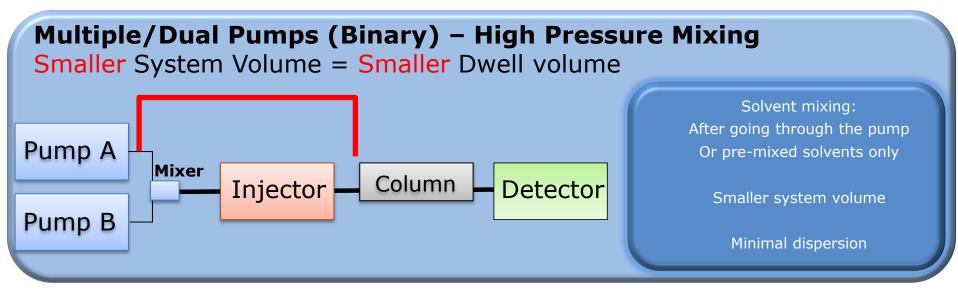

- USP <621> Chromatography Change Update
 - Taking advantage of the change
 - Examples
- Strategy for Successful Method Transfer
 - Prevention
 - Troubleshooting
 - Sources of Contamination

Method Transfer Principle

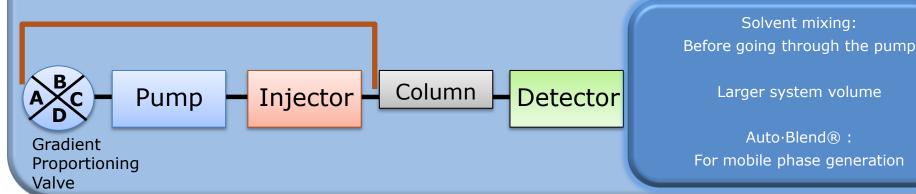
Summary

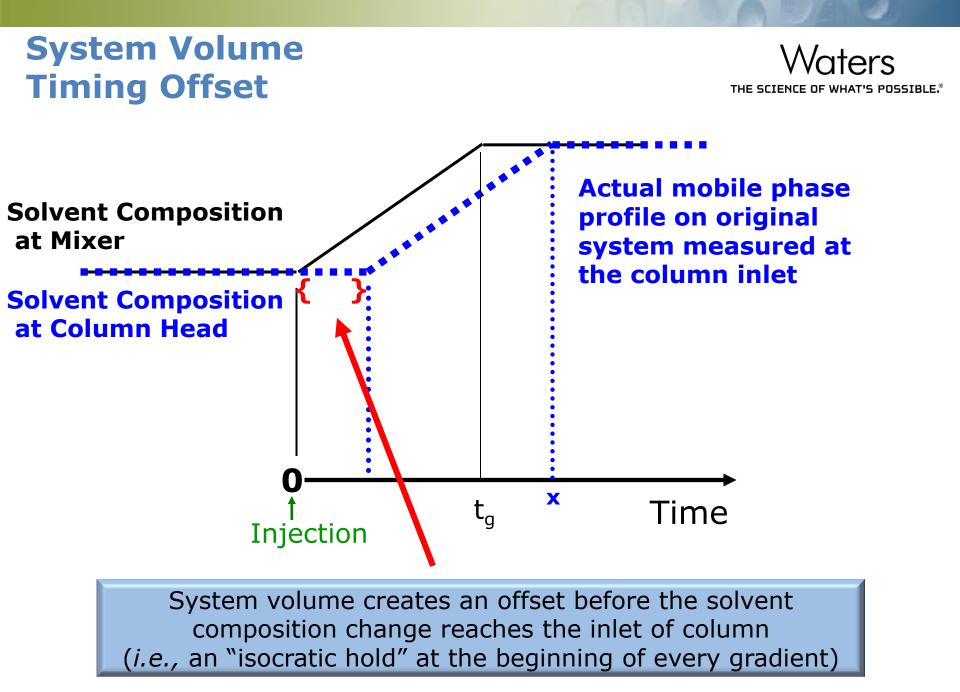
Method Transfer Scenarios

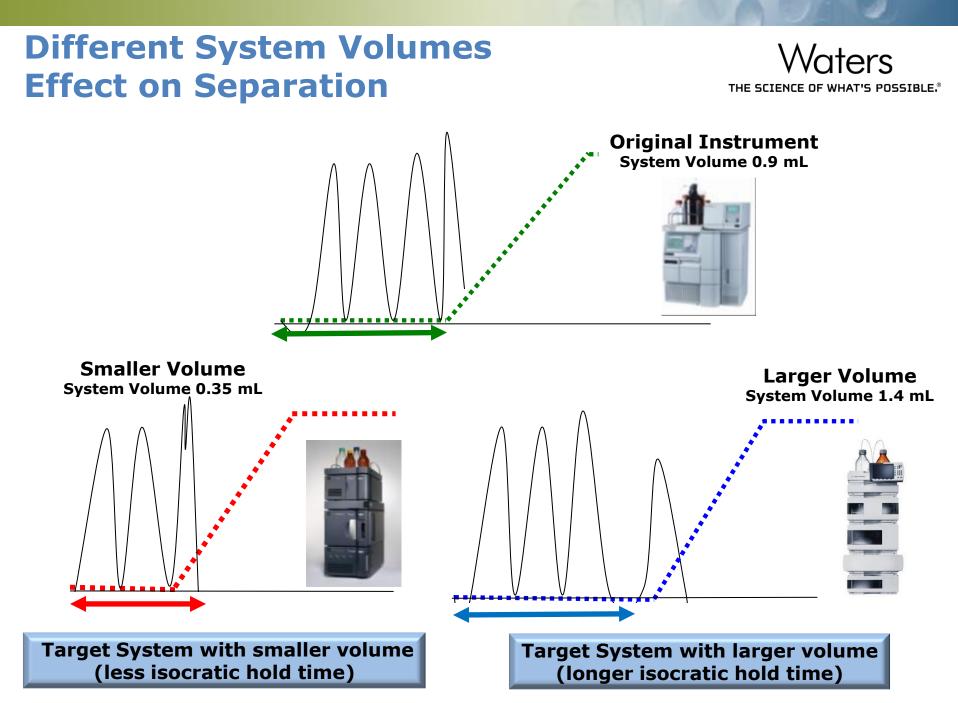
Waters THE SCIENCE OF WHAT'S POSSIBLE."



Scaled to UPLC Method


Differences in System Volume: Low vs. High Pressure Mixing





Single Pump (Quaternary) - Low Pressure Mixing

Larger System Volume = Larger Dwell volume

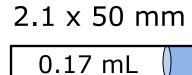
Gradient Type: Compensating for System Volumes

- Compare system volumes
 - This volume should be converted to "column volumes (CVs)" for the best comparison

- If target system gives smaller isocratic segment
 - ADD an initial hold to the gradient table to give the identical hold.

- If target system gives larger isocratic segment
 - Use the pre-injector volume feature

Scaling Injection Volume


Guideline:

Injection volume should be less than 5% of column volume. Aim for <1% and experimentally determine if you can go higher based on chromatographic conditions.

4.6 x 150 mm

2.49 mL

20 μ L injection/2.49 mL = 0.8%

20 μ L injection/0.17 mL = 12%

If you inject too much, the result will be poor peak shape due to volume overload

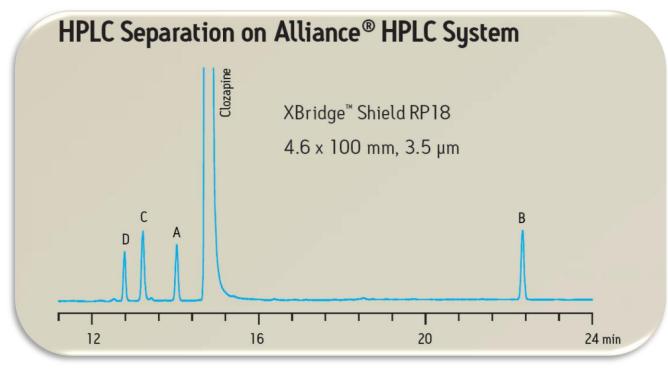
ACQUITY UPLC Columns Calculator

-	it Help								
An	alytical Factors							0	
0) Isocratic	Molecular Weight:	Colum	n Temperatu	ne:				
	• Gradient	0-100		°C				Calcula	
PLC	(Quaternary)	From		To UR			UPLC (QSM)		
	(()))))))))))))))))))))))))))))))))))))	From	APLC	10 01	-20		a		
noe	n HPLC	L/4	p = 28,571	To UPLC			L/dp =	29,413	
Co	lumn Length (L):	100 🛩 mm		Column	Length (L):	50	➤ mm		
Co	lumn Diameter:	4.6 ¥ mm		Column	Diameter:	2.1	₩ mm	₩ mm	
Pa	rticle Diameter (dp):	3.5 ¥ µm		Particle	Diameter (d	ip): 1.7	μm		
In	jection Volume:	20 µL		Maximu	m Pressure:	1499	7 psi		
	vell Volume:	0.90 ml.		Dwell V	harran	0.350	mL		
	TER TOTALITE:			L'HEA H	and the states				
	ginal Gradient	Flow (mUmin)	36A	%B	%C	%D	Column		
89	carrie Grand	Piow (mDmin)			(hdethanol)	(Other)			
1			(Aqueous)	'Acetonitrile)	(Methanol)		Volumes		
	Initial	1.50	(Aqueous) 100.0	Acetonitrile)	0.0	0.0			
		1.50 1.50	(Aqueous)	'Acetonitrile)					
	Initial 6.00	1.50	(Aqueous) 100.0 100.0	Acetonitrile) 0.0 0.0	0.0 0.0	0.0 0.0	8.21		
	Initial 6.00 20.00	1.50 1.50 1.50 1.50	(Aqueous) 100.0 100.0 95.0	Acetonitrile) 0.0 0.0 5.0 15.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	 8.21 19.15 20.51		
	Initial 6.00 20.00 35.00	1.50 1.50 1.50	(Aqueous) 100.0 100.0 95.0 85.0	Acetonitrile) 0.0 0.0 5.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0	 8.21 19.15		
	Initial 6.00 20.00 35.00 50.00	1.50 1.50 1.50 1.50 1.50 1.50	(Aqueous) 100.0 100.0 95.0 85.0 80.0	Acetonitrile) 0.0 0.0 5.0 15.0 20.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	 8.21 19.15 20.51 20.51		
	Initial 6.00 20.00 35.00 50.00 51.00	1.50 1.50 1.50 1.50 1.50 1.50 1.50	(Aqueous) 100.0 95.0 85.0 80.0 40.0	Acetonitrile) 0.0 5.0 15.0 20.0 60.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	 8.21 19.15 20.51 20.51 1.37		

ACQUITY UPLC[®] Columns Calculator handles these calculations

Three Method Transfer Scenarios

Scenario 1 : Maximizing Asset Utilization


- Applying existing HPLC methods onto HPLC and ACQUITY UPLC H-Class systems
- Adapting HPLC methods to different system designs
- Scenario 2 : Transferring a HPLC method to UPLC systems
 - Converting a legacy HPLC method into a UPLC method

- Scenario 3: Transferring a UPLC method to HPLC systems
 - Taking advantage of UPLC for quickly and efficiently developing a method
 - Transfer this method to labs still equipped with HPLC systems

Scenario 1 - Maximizing Asset Utilization: Adapting HPLC Methods to Different Systems Design

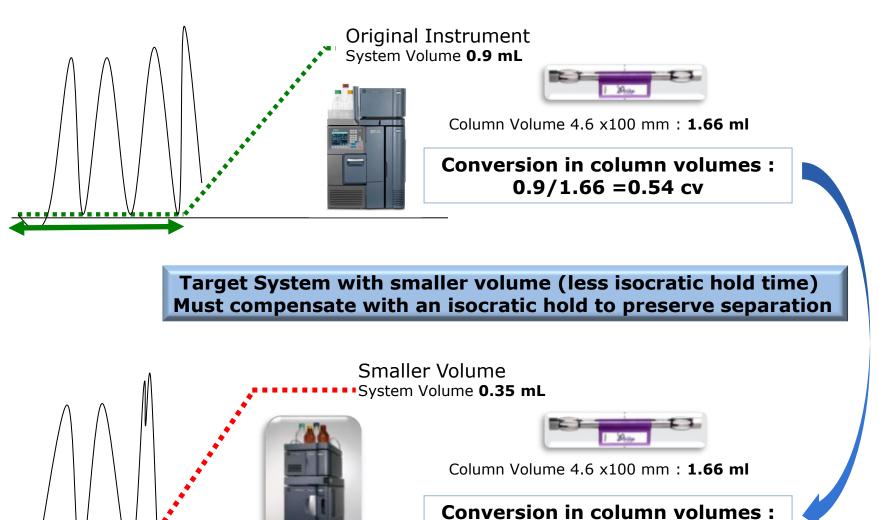
THE SCIENCE OF WHAT'S POSSIBLE.

Future-proofing your lab

Invest in new instrumentation that can run both legacy HPLC methods and UPLC methods for new projects

Goal

Transfer existing HPLC method to a different LC system Must compensate for system dwell volume differences



Scenario 1: LC Instrument Transfer

0.35/1.66 =0.21 cv

Scenario 1: HPLC to HPLC Method Transfer

Waters THE SCIENCE OF WHAT'S POSSIBLE.

	ACQUITY UPLC Columns Ca	alculator - Untitl	led *						
F	File Edit Help Analytical Factors Isocratic Gradient Molecular Weight: Column Temperature: Calculate Calculate								
	HPLC (Quaternary) From HPLC To HPLC HPLC (Quaternary) HPLC (Quaternary) From HPLC CV = 1.097 mL L/dp = 28,571 To HPLC CV = 1.097 mL L/dp = 28,571								
	Column Length (L):	100 • m			Length (L):	100	▼ mm		
	Column Diameter: Particle Diameter (dp):	4.6 • m 3.5 • μπ		Column Diameter: 4.6 Particle Diameter (dp): 3.5		97 mL L/dp = 28,571 ▼ mm ▼ mm ▼ µm			
	Injection Volume:	20.0 uL					_		
	Dwell Volume:	0.90 m	L	Dwell Vo	lume:	0.35	mL		
	Original Gradient 1248 psi								
	Time (min) 👘	Flow (mL/mir	n) (Aqueous	%B s) (Acetonitrile	%C) (Methanol)	%D (Other)	Column Volumes		
	▶ 1 Initial	1.17	95.0	5.0	0.0	0.0			
	2 2.45	1.17	95.0	5.0	0.0	0.0	2.61		
	3 23.04 4 25.10	1.17	0.0	100.0	0.0	0.0	21.96		
	4 25.10 5 27.16	1.17 1.17	0.0	100.0 5.0	0.0	0.0	2.20		
	6 31.25	1.17	95.0	5.0	0.0	0.0	4.36		
	* 7								

Dwell Volume

To preserve the gradient profile when transferring from one instrument to another, the system dwell volume must be considered.

Scenario 1: HPLC to HPLC Method Transfer

Waters THE SCIENCE OF WHAT'S POSSIBLE."

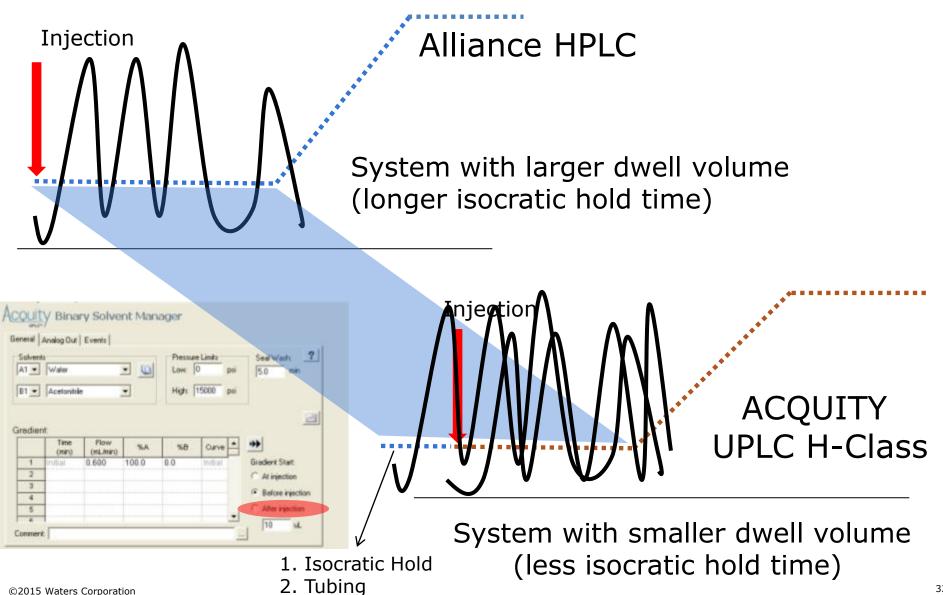
Original Gradient 1248 psi %B %C %A %D Column Time (min) Flow (mL/min) (Aqueous) (Acetonitrile) (Methanol) (Other) Volumes 1.17 × 1 Initial 95.0 5.0 0.0 0.0 ---2 2.45 1.17 95.0 5.0 0.0 0.0 2.61 3 23.04 1.17 0.0 100.0 0.0 0.0 21.96 4 25.10 1.17 0.0 0.0 2.20 0.0 100.0 5 27.16 1.17 95.0 5.0 0.0 0.0 2.20 6 31.25 1.17 95.0 5.0 0.0 0.0 4.36 * 7

Gradient Results - Untitled	4.2-					×
Column	Run Time (min)	Peak Capacity	Flow Rate (mL/min)	Pressure (psi)	Injection Volume (uL)	
Original HPLC column c	onditions					
100 mm x 4.6 mm, 3.5 µm	31.25	98	1.17	1248	20.0	
New HPLC conditions w	ith scaled gradien	t (accounting for	particle size) -			Print
100 mm x 4.6 mm, 3.5 µm	31.72	98	1.17	1248	20.0	
New HPLC conditions w	ith scaled gradien	t (disregarding pa	nticle size) —			
100 mm x 4.6 mm, 3.5 µm	31.72	98	1.17	1248	20.0	Flow Rate

New HPLC Gradient

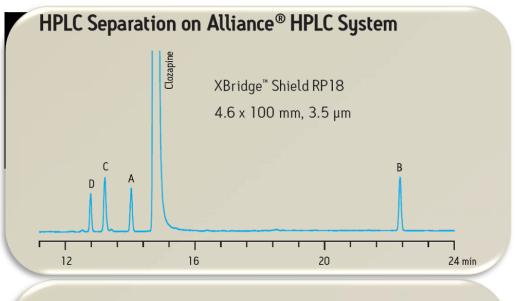
New HPLC conditions with scaled gradient (accounting for particle size), 100 mm x 4.6 mm, 3.5 µm column

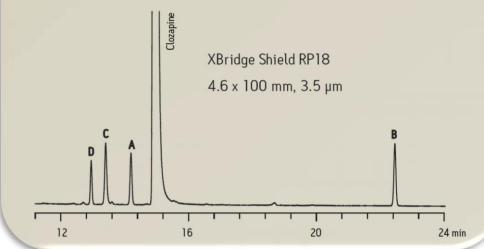
Z]⊕	Time (min)	Flow (mL/min)	%A (Aqueous)	%B (Acetonitrile)	%C (Methanol)	%D (Other)	Column Volumes
Þ		Initial	1.17	95.0	5.0	0.0	0.0	
	2	2.92	1.17	95.0	5.0	0.0	0.0	3.11
	3	23.51	1.17	0.0	100.0	0.0	0.0	21.96
	4	25.57	1.17	0.0	100.0	0.0	0.0	2.20
	5	27.63	1.17	95.0	5.0	0.0	0.0	2.20
	6	31.72	1.17	95.0	5.0	0.0	0.0	4.36


Gradient Column Volumes

To preserve the gradient profile, the number of gradient column volumes for each step, should be maintained.

As a result, the gradient time table has been adjusted.



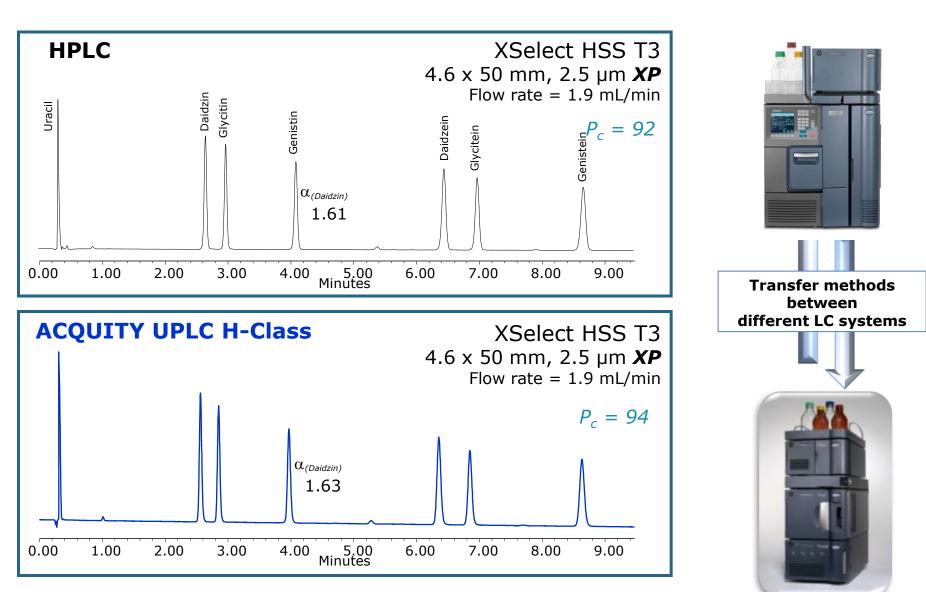


Scenario 1 - The Result: HPLC to HPLC Method Transfer

Waters THE SCIENCE OF WHAT'S POSSIBLE."

HPLC Separation on ACQUITY UPLC H-Class System

Future-proof your lab


Run HPLC methods on ACQUITY UPLC H-Class

Flexibility to run both HPLC and UPLC methods

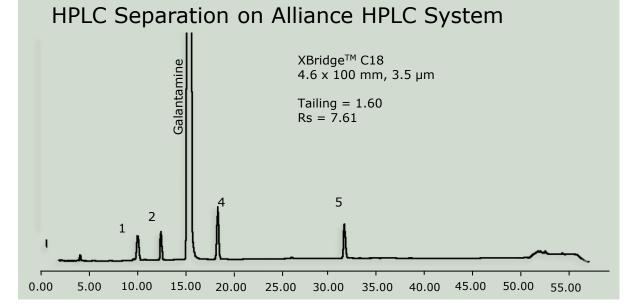
Ease of Method Transfer Between LC Platforms

Three Method Transfer Scenarios

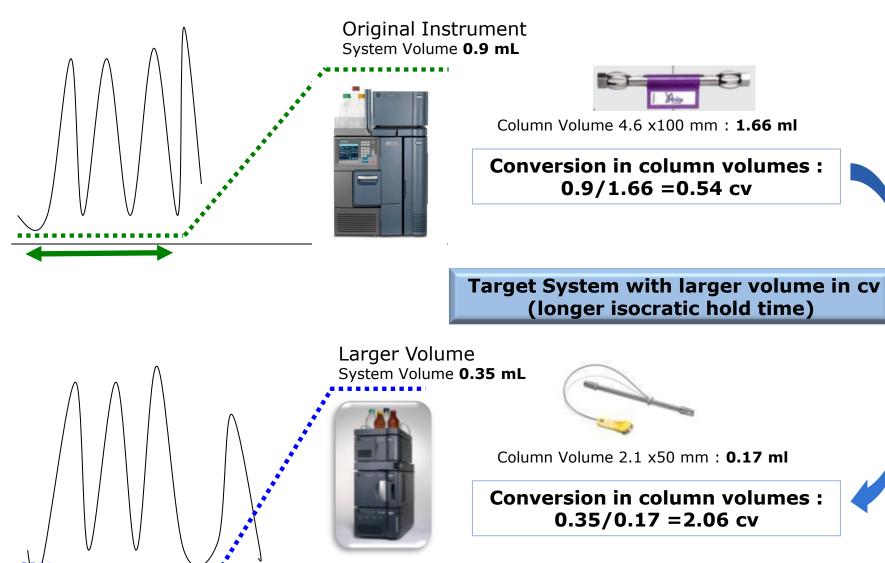
- Scenario 1 : Maximizing Asset Utilization
 - Applying existing HPLC methods onto HPLC and ACQUITY UPLC H-Class systems
 - Adapting HPLC methods to different system designs

- Scenario 2 : Transferring a HPLC method to UPLC systems
 - Converting a legacy HPLC method into a UPLC method

- Scenario 3: Transferring a UPLC method to HPLC systems
 - Taking advantage of UPLC for quickly and efficiently developing a method
 - Transfer this method to labs still equipped with HPLC systems


Scenario 2: Turning a Legacy HPLC Method Into a UPLC Method

Method Transfer - Reduce Analysis Time


Take advantage of sub-2- μ m particle technology and transfer to ACQUITY UPLC H-Class system

Criteria

USP Tailing <2.0, Rs (galantamine/impurity 4) >4.5

Scenario 2: LC Instrument Transfer

Scenario 2: Turning a Legacy HPLC Method Into a UPLC Method

Waters THE SCIENCE OF WHAT'S POSSIBLE."

	dit Help						
An	alytical Factors						0
1	isocratic	Molecular Weight:	Column	Temperature			
				7	5		Calculat
(Gradient	0-100 -	Da 30	°C			Calcula
HPLC	(Quaternary) 🔻	From I		To UPL	.c		UPLC (QSM)
Fro	m HPLC	CV = 1.097 mL L/d	p = 28,571	To UPLC		CV = 0.1	14 mL L/dp = 29,412
Co	olumn Length (L):	100 - mm		Column L	ength (L <mark>)</mark> :	50	▼ mm
Co	olumn Diameter:	4.6 • mm		Column D	iameter:	2.1	• mm
Pa	article Diameter (dp):	3.5 ▼ μm		Particle D	iameter (dp): 1.7	• hw
		20.0			-	14007	_
In	jection Volume:	20.0 μL		Maximun	Pressure:	14997	psi
Dı	well Volume:	0.90 mL		Dwell Vol	ume:	0.350	mL
	ginal Gradient						
	unal Granen						
	0 psi						
	-	Flow (mL/min)	%A (Aqueous)	%B (Acetonitrile)	%C (Methanol)	%D (Other)	Column Volumes
160	o psi	Flow (mL/min)	and a second	and the second second second second	and the second	11 August Aug	
160 1 3	D psi Time (min)		(Aqueous)	(Acetonitrile)	(Methanol)	(Other)	Volumes 8.21
160 1 3 4	0 psi Time (min) / Initial 6.00 20.00	1.50 1.50 1.50	(Aqueous) 100.0 100.0 95.0	(Acetonitrile) 0.0 0.0 5.0	(Methanol) 0.0 0.0 0.0	(Other) 0.0 0.0 0.0	Volumes 8.21 19.15
160 1 3 4 5	0 psi Time (min) / Initial 6.00 20.00 35.00	1.50 1.50 1.50 1.50	(Aqueous) 100.0 100.0 95.0 85.0	(Acetonitrile) 0.0 0.0 5.0 15.0	(Methanol) 0.0 0.0 0.0 0.0 0.0	(Other) 0.0 0.0 0.0 0.0 0.0	Volumes 8.21 19.15 20.51
160 1 3 4 5 6	D psi Time (min) / Initial 6.00 20.00 35.00 50.00	1.50 1.50 1.50 1.50 1.50 1.50	(Aqueous) 100.0 100.0 95.0 85.0 80.0	(Acetonitrile) 0.0 0.0 5.0 15.0 20.0	(Methanol) 0.0 0.0 0.0 0.0 0.0 0.0	(Other) 0.0 0.0 0.0 0.0 0.0 0.0	Volumes 8.21 19.15 20.51 20.51
1600 1 3 4 5 6 7	D psi Time (min) / Initial 6.00 20.00 35.00 50.00 51.00	1.50 1.50 1.50 1.50 1.50 1.50 1.50	(Aqueous) 100.0 95.0 85.0 80.0 40.0	(Acetonitrile) 0.0 5.0 15.0 20.0 60.0	(Methanol) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(Other) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volumes 8.21 19.15 20.51 20.51 1.37
1600 1 3 4 5 6 7 8	0 psi Time (min) Initial 6.00 20.00 35.00 50.00 51.00 55.00	1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	(Aqueous) 100.0 95.0 85.0 80.0 40.0 40.0	(Acetonitrile) 0.0 5.0 15.0 20.0 60.0 60.0	(Methanol) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(Other) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volumes 8.21 19.15 20.51 20.51 1.37 5.47
1600 1 3 4 5 6 7 8 9	0 psi Time (min) Initial 6.00 20.00 35.00 50.00 51.00 55.00	1.50 1.50 1.50 1.50 1.50 1.50 1.50	(Aqueous) 100.0 95.0 85.0 80.0 40.0	(Acetonitrile) 0.0 5.0 15.0 20.0 60.0	(Methanol) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(Other) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volumes 8.21 19.15 20.51 20.51 1.37

L/dp (Column Length to Particle Size Ratio)

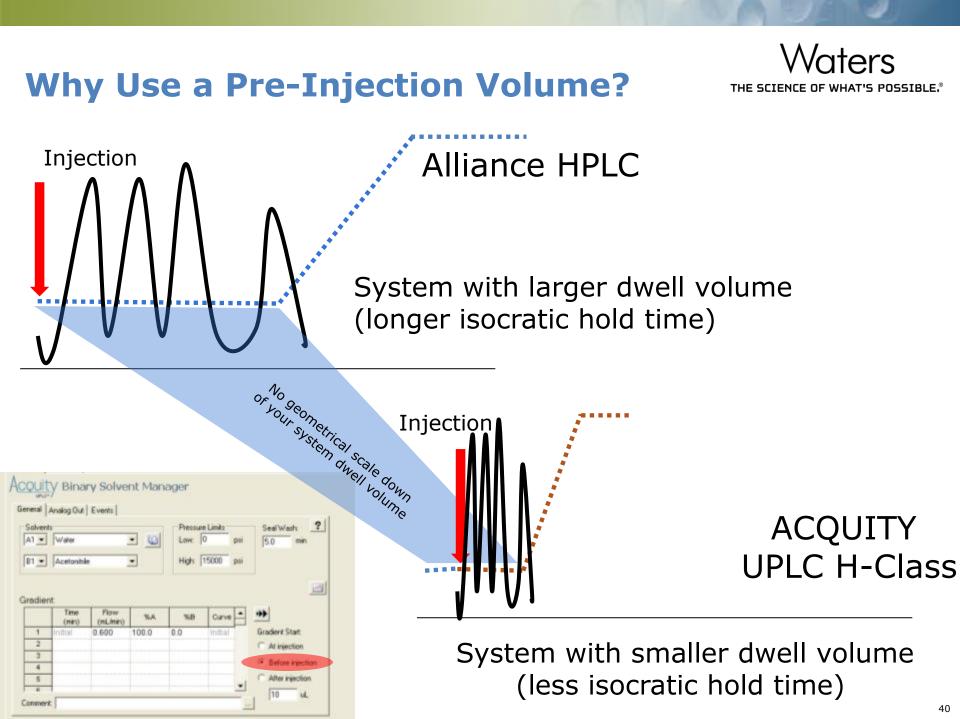
To preserve the separation power of the gradient, L/dp must be matched

Scenario 2: Turning a Legacy HPLC Method Into a UPLC Method

Waters THE SCIENCE OF WHAT'S POSSIBLE."

To preserve the mass and volume load on column, the injection volume must be scaled appropriately

Injection Volume


Pre-Injector Volume

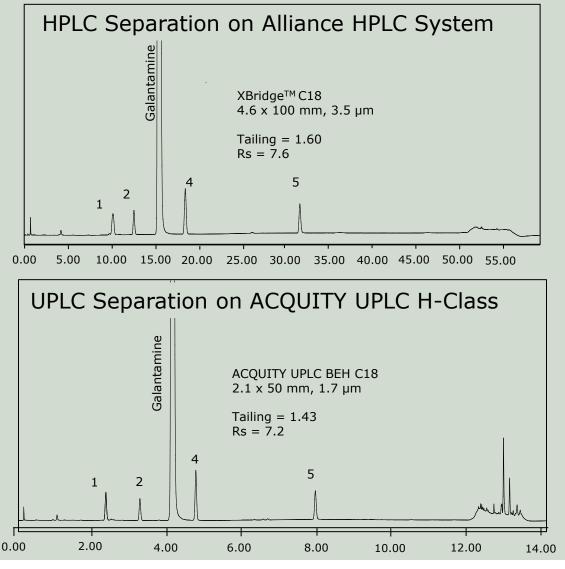
To preserve the gradient profile, the pre-injector volume must be used.

This allows the gradient to start before the injection is triggered.

		Column		Run Time (min)	Peak Cap		ow Rate nL/min)	Pressure (psi)		njection Volume uL)	
		Original HPLC o	column cond	litions							
		100 mm x 4.6 mm, 3	.5 µm	60.00	68	1.	500	989		20.0	
		New UPLC con	ditions with	scaled grad	ient (accou	inting for	particle siz	e)			
		50 mm x 2.1 mm, 1.7	⁷ μm	14.17	69	0.	644	4850		2.1	
Orig	inal Gradient								_		
989 p	si										
	Time (min)	Flow (mL/min)	%Å (Aqueous)	%B 'Acetonitrile)	%C (Methanol)	%D (Other)		umn imes	^		
1	Initial	1.50	100.0	0.0	0.0	0.0					
	6.00	1.50	100.0	0.0	0.0	0.0	8.21				
	20.00	1.50	95.0	5.0	0.0	0.0	19.15				
	35.00	1.50	85.0	15.0	0.0	0.0	20.51		- 11		
	50.00	1.50	80.0	20.0	0.0	0.0	20.51				
	51.00	1.50	40.0	60.0	0.0	0.0	1.37				
F	55.00	1.50	40.0	60.0	0.0	0.0	5.47				
	56.00	1.50	100.0	0.0	0.0	0.0	1.37				
	60.00	1.50	100.0	0.0	0.0	0.0	5.47		~		
*											
					1						

	UPLC Gradient e-injector volume = 256	· · ·		onditions wit 1 mm, 1.7 µn		dient (acco	unting for particle siz	:e)
⊠≞	Time (min)	Flow (mL/min)	%A (Aqueous)	%B 'Acetonitrile)	%C (Methanol)	%D (Other)	Column Volumes	
1	Initial	0.644	100.0	0.0	0.0	0.0		
2	1.06	0.644	100.0	0.0	0.0	0.0	5.96	
3	4.46	0.644	95.0	5.0	0.0	0.0	19.15	
4	8.10	0.644	85.0	15.0	0.0	0.0	20.51	
5	11.74	0.644	80.0	20.0	0.0	0.0	20.51	
6	11.99	0.644	40.0	60.0	0.0	0.0	1.37	
7	12.96	0.644	40.0	60.0	0.0	0.0	5.47	
8	13.20	0.644	100.0	0.0	0.0	0.0	1.37	Ļ
9	14.17	0.644	100.0	0.0	0.0	0.0	5.47	ŀ

Scenario 2 - The Result: Turning a Legacy HPLC Method Into a UPLC Method



Adjustment of method

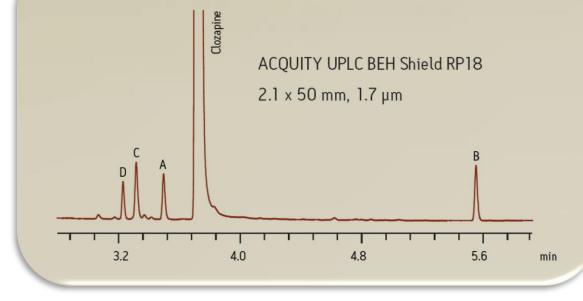
Reduce analysis time 4.3X while preserving separation integrity

Tailing and Resolution Criteria were met

Criteria USP Tailing < 2.0 Rs (galantamine/impurity 4) > 4.5

Three Method Transfer Scenarios

- Scenario 1 : Maximizing Asset Utilization
 - Applying existing HPLC methods onto HPLC and ACQUITY UPLC H-Class systems
 - Adapting HPLC methods to different system designs
- Scenario 2 : Transferring a HPLC method to UPLC systems
 - Converting a legacy HPLC method into a UPLC method



- Scenario 3: Transferring a UPLC method to HPLC systems
 - Taking advantage of UPLC for quickly and efficiently developing a method
 - Transfer this method to labs still equipped with HPLC systems

©2015 Waters Corporation

Scenario 3 : UPLC to HPLC Method Transfer

UPLC Separation on ACQUITY UPLC H-Class System

Maximize Asset Utilization

Transfer from UPLC to another department/contract partner that has a bank of HPLC instruments

Goal

Transfer UPLC method to HPLC while maintaining selectivity

Waters

Scenario 3 : UPLC to HPLC Method Transfer

	UITY UPLC Columns Ca lit Help	lculator - Untitled *	-		-		
6	alytical Factors) Isocratic) Gradient	Molecular Weight: 0-100 Da		Temperature] °C	:		Calculate
UPLC	(QSM) 🔻	From UF	PLC	To HPL	.c		HPLC (Quaternary)
Fron	n UPLC	CV = 0.114 mL L/dp =	29,412	To HPLC		CV = 1.09	97 mL L/dp = 28,571
Co	lumn Length (L):	50 • mm		Column Le	ength (L):	100	▼ mm
Co	lumn Diameter:	2.1 • mm		Column D	iameter:	4.6	▼ mm
Pa	rticle Diameter (dp):	1.7 • μm		Particle D	iameter (dp)	: 3.5	ν μm
	jection Volume: vell Volume:	2.0 μL 0.350 mL		Dwell Volu	ume:	0.90	mL
Oric	jinal Gradient			•••••		•••••	······
-	-						
6093	i psi	1	1		1	1	
	Time (min) 🛛 🔺	Flow (mL/min)	%A (Aqueous)	%B (Acetonitrile)	%C (Methanol)	%D (Other)	Column Volumes
1	Initial	0.500	90.0	10.0	0.0	0.0	
	5.00	0.500	10.0	90.0	0.0	0.0	21.87
	5.50	0.500	10.0	90.0	0.0	0.0	2.19
│	5.51	0.500	90.0	10.0	0.0	0.0	0.04
*	7.00	0.500	90.0	10.0	0.0	0.0	6.52
		1	1	1	1	1	

Easy Method Transfer

The ACQUITY UPLC Columns Calculator will provide target method key parameters automatically.

Scenario 3: UPLC to HPLC Method Transfer

Waters THE SCIENCE OF WHAT'S POSSIBLE.

ACQUITY UPLC Columns Calculator

- For automatic calculations

Injection Volume

 Injection volume properly scaled

Extra Gradient Hold

 Automatically calculated and inserted into gradient table

N_{cv} (Column Volumes)

 Kept consistent throughout gradient steps

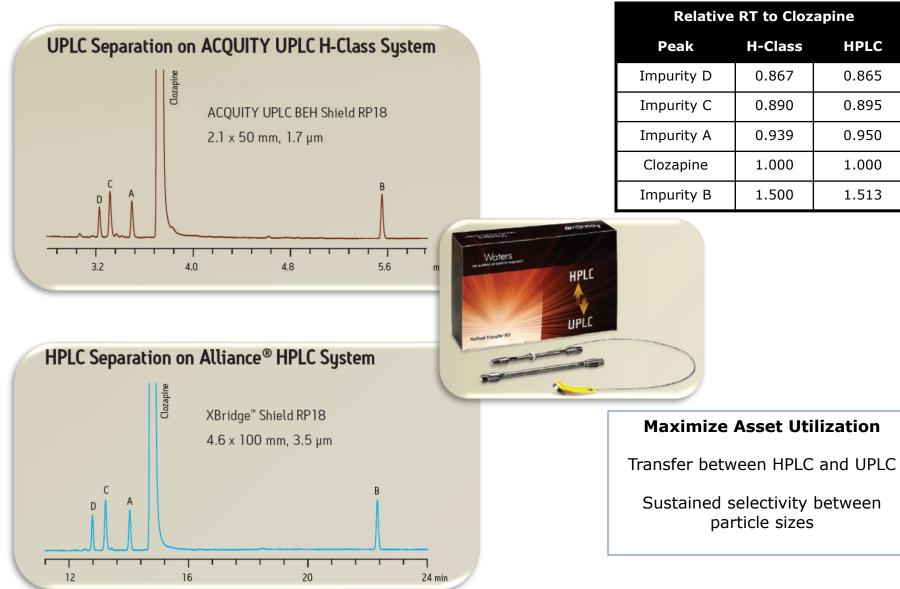
Orig 6093	inal Gradient psi						
	Time (min)	Flow (mL/min)	%A (Aqueous)	%B (Acetonitrile)	%C (Methanol)	%D (Other)	Column Volumes
1	Initial	0.500	90.0	10.0	0.0	0.0	
	5.00	0.500	10.0	90.0	0.0	0.0	21.87
	5.50	0.500	10.0	90.0	0.0	0.0	2.19
F	5.51	0.500	90.0	10.0	0.0	0.0	0.04
	7.00	0.500	90.0	10.0	0.0	0.0	6.52
*							

Column	1	Run Time (min)	Peak	Capacity		Pressure (psi)	Injection Volun (uL)	ne	
Origi	inal UPLC column cor	ditions							
50 mm	x 2.1 mm, 1.7 μm	7.00	86	0.5	50 (6093	2.0		
New	HPLC conditions with	n scaled gradien	nt (accou	nting for parti	icle size)				Print
100 mn	m x 4.6 mm, 3.5 µm	30.93	84	1.1	17	1243	19.2		0
New	HPLC conditions with	scaled gradien	t (disreg	arding particle	e size) ———				- 29
100 mn	m x 4.6 mm, 3.5 μm	14.00	82	2.4	40 2	2559	19.2		Flow Ba
New	m x 4.6 mm, 3.5 µm v HPLC Gradient gradient hold = 245	t		New HPLC cor 100 mm x 4.6	nditions with 5 mm, 3.5 µm	scaled gradie column	ent (accounti	ng for par	
New	v HPLC Gradien	t	1	New HPLC cor	nditions with	scaled gradie column %C		5.	ticle size)
New <u>Undo</u>	v HPLC Gradient	t 9 µL	1	New HPLC cor 100 mm x 4.6 %A	nditions with 5 mm, 3.5 µm %B	scaled gradie column %C	ent (accountio	5.	ticle size)
New Undo	v HPLC Gradient gradient hold = 245 Time (min) Initial 2.11	t 9 <u>µL</u> Flow (mL/ 1.17 1.17	1	New HPLC cor 100 mm x 4.6 %A (Aqueous) 90.0 90.0	%B (Acetonitrile) 10.0 10.0	scaled gradie column %C (Methanol) 0.0 0.0	ent (accountion %D (Other) 0.0 0.0	Columr 2.24	Row Ra
New <u>Undo</u> ↓ 1 2 3	v HPLC Gradient gradient hold = 245 Time (min) Initial 2.11 22.70	E 9 µL Flow (mL/ 1.17 1.17 1.17	1	New HPLC cor 100 mm x 4.6 (Aqueous) 90.0 90.0 10.0	%B (Acetonitrile) 10.0 90.0	scaled gradie column %C (Methanol) 0.0 0.0 0.0	**************************************	Columr 2.24 21.87	ticle size)
New <u>Undo</u> ▶ 1 2 3 4	v HPLC Gradient gradient hold = 245 Time (min) Initial 2.11	t 9 <u>µL</u> Flow (mL/ 1.17 1.17	1	New HPLC cor 100 mm x 4.6 %A (Aqueous) 90.0 90.0	%B (Acetonitrile) 10.0 10.0	scaled gradie column %C (Methanol) 0.0 0.0	%D (Other) 0.0 0.0 0.0 0.0 0.0	Columr 2.24	ticle size)

Scenario 3 - The Result: Transfer a **UPLC Method to HPLC Systems**

Whaters THE SCIENCE OF WHAT'S POSSIBLE.

HPLC


0.865

0.895

0.950

1.000

1.513

©2015 Waters Corporation

46

Summary

- USP Chapter <621> Chromatography updated Aug-2014
- Other Pharmacopoeias (eg. EU) expected to follow. USP and EurP to harmonize both chapter <621> and 2.2.46 to the extent possible
- Isocratic methods: more flexibility in column dimensions
- Gradient methods changes more limited
- Most methods can be transferred seamlessly from HPLC to UPLC
- Take advantage of these changes:
 - Improve isocratic methods with sub-2-µm columns and ACQUITY UPLC H-Class
 - Moderate savings with sub-3-µm columns with HPLC
 - Use Column Selectivity Chart to select the best UPLC column
 - Use the ACQUITY Columns Calculator for proper transfers per L/dp
 - Utilize ACQUITY UPLC H-Class to run both HPLC and UPLC methods
- For successful UPLC transfer, always ensure:
 - Method compatibility
 - System cleanliness (avoid bacteria)
 - Fresh, high quality mobile phases are prepared

Waters the science of what's possible."

©2015 Waters Corporation

48