

synthesis of chiral intermediates to chiral separation & analysis

Application Range

ChiroSil[®] columns are very effective for enantiomer separation of various natural and unnatural α -amino acids, α -amino acids derivatives, α -amino acids and primary amines. Other Racemic compounds, such as amino alcohols (β -blockers), secondary amines, drugs containing primary amines and secondary amines are also expected to be resolved on ChiroSil[®] columns.

The structure of ChiroSil[®] Stationary phase

The chiral stationary phase for ChiroSil[®] RCA(+) and SCA(-) is prepared by a covalent trifunctional bonding of (+) or (-)-(18-Crown-6)-tetracarboxylic acid as the chiral selector to aminopropyl silica gel.

(-)- (18-Crown-6)-tetracarboxylic acid

Separation Mechanism

The mechanism of ChiroSil® based on chiral crown ether might originate from two different mechanisms. One mechanism is the complexation of the primary ammonium group (R-NH₃+) formed by protonation α -amino acids and primary amines under acidic condition inside the cavity of the 18-crown-6 ring of the ChiroSil[®] CSP. The other mechanism is the side two carboxylic acid groups of ChiroSil[®] CSP can act as steric barrier groups or as hydrogen bonding donor or accepter groups.

CONTENTS

- 1. Introduction / 03
- 2. Advantages of ChiroSil / 04
- 3. Method Development / 06
- 4. General Operating Conditions / 08
- 5. ChiroSil Application / 09
- 6. References / 25
- 7. Product list / 27

1. Introduction

2. Advantages of ChiroSil[®]

High selectivity:

- $\cdot \alpha$ -Amino Acids
- $\cdot \alpha$ -Amino Amides and Esters
- Amines
- Amino Alcohols
- · β -Blockers
- · β -Amino Acids
- · Aryl α -Amino Ketones
- Tocainide's Analogues
- Gemifloxacin
- · N-(3, 5-dinitrobenzoyl)- α -Amino Acids
- N-(3-dinitrobenzoyl)- α -Amino Acids
- · N-benzyl- α -Amino Acids

Universal Solvent Capability

Ability to Invert Elution Order

Excellent Column Durability

RStech Corporation

High selectivity

ChiroSil[®] column have a high selectivity for enantiomer separation of various natural and unnatural α -amino acids, α -amino acids derivatives, β -amino acids and primary amines.

Other Racemic compounds, such as amino alcohols (β -blockers), secondary amines, drugs containing primary amines and secondary amines are also expected to be resolved on ChiroSil[®] columns.

Universal Solvent Capability

An important advantage of ChiroSil[®] over other commercial crown ether-based columns is that it can be used with various mobile phases, without any deterioration in its chiral recognition ability, because the chiral selector of ChiroSil® is bonded to silica gel covalently.

ChiroSil[®] Chiral Stationary Phases can be used in both normal and reversed-phased solvents. For example, even 100% methanol can be used as a mobile phase for the resolution of racemic compound on ChiroSil®

Ability to Invert Elution Order

ChiroSil® has an ability to invert the elution order of enantiomers by switching columns. In case of Amino acid, most L-enantiomers elute first on the ChiroSil® RCA(+) and D-enantimoers elute first on the ChiroSil[®] SCA(-) column.

Excellent Column Durability

ChiroSil[®] stability was tested under highly acidic conditions. After 300 hours of continuous operation, there was no observable change in α and k'.

<ChiroSil Duration K₁>

< ChiroSil Duration α >

conditions:

Column: ChiroSil RCA 150mm X 4.6mm Mobile phase: MeOH/H₂O = 84/16 in 0.5ml Perchloric Acid/1000ml, pH 2.09 Flow rate: 1ml/min Detector: 210nm Injection: 5**さ**(1-Aminoindan) Press: 86~83bar

-0 0.977 300hr 222h

3. Method Development

ChiroSil[®] should be operated under an aqueous acidic condition for the separation

Effect of organic modifier

As the content of organic modifier increases, the aqueous mobile phase becomes less polar and more hydrophobic. In this instance, the hydrophilic interaction between polar-protonated analytes and the mobile phase decreases and consequently, the retention is expected to increase as the content of organic modifier in aqueous mobile phase increases.

The capacity factors (k') generally increase as the content of organic modifier increases and the separation factors (α) and the resolution factors (Rs), in general, increase as the content of organic modifier in the aqueous mobile phase increases.

Effect of acidic modifier and acid concentration

*Acidic modifier

Various kinds of acids such as acetic acid, perchloric acid, sulfuric acid, phosphoric acid and trifluoroacetic acid can be used in ChiroSil[®]

As the enatioselectivity of each acid is different so it is recommended that you find the proper acid for getting a good resolution by the trial and error method.

Sample: Tyrosine Column : ChiroSil SCA(-) 150x4.6mm Flow rate: 1.0ml/min Detector : UV 210nm

*Acid Concentration

As the content of acidic modifier in aqueous mobile phase increases, the ionic strength of mobile phase increases and consequently, the hydration or the dissolution of polar-protonated analytes by mobile phase is expected to increase. In this instance, polar-protonated analytes are eluted faster and faster as the content of acidic modifier increases.

Generally the capacity factors (k') decease as the concentration of acidic modifier in the mobile phase increases but we recommend trying an analysis for new analytes under low acid concentration because higher acid concentration is not always performing better resolutions.

Effect of temperature

At lower temperature, the formation of the two diastereomeric complexes formed by the two enantiomers of racemic compounds inside the cavity of the crown ether ring of CSP is expected to be much more favorable than that of the less stable diastereomeric complexe. The difference in the stability of the two diastereomeric complexes increases as the temperature of the column is lowered.

The capacity factors (k'), the separation factors (α) and the resolution factors (Rs) are improved as the temperature is lowered.

Sample: 3-amino-4, 4-diphenylbutyric acid Mobile phase: 50% Methanol in H2O+ sulfuric acid (10mM) Column: ChiroSil RCA type Flow rate: 0.5ml/min Detector: UV 210nm

Sample: 3-amino-4, 4-diphenylbutyric acid Mobile phase: 50% Methanol in H2O+ sulfuric acid (10mM) Column: ChiroSil RCA type Flow rate: 0.5ml/min Detector: UV 210nm

5. ChiroSil[®] Application

4. General Operating Conditions

Storage

ChiroSil[®] columns are shipped in methanol only.

Temperature

The temperature that can be safely employed is from -5°C to 50°C in all solvent modes. In many cases, lower temperature shows better resolution of analytes

pH range

ChiroSil[®] can be used in the pH range $1.5 \sim 7.5$

Pressure

Operating pressure for ChiroSil[®] Columns is generally in range of 1000 psi to 5000 psi

Cleaning of the column

After using ChiroSil[®] under acidic conditions, never store with acidic components. When analysis is complete, wash the column with 20ml of distilled water - first at a flow-rate of 1ml/min then gradually increasing the amount of methanol. Finally, wash it with 20ml of methanol at a flow-rate of 1ml/min. ChiroSil[®] is recommended to be filled with methanol 100% after washing.

Equilibration Time

ChiroSil needs enough equilibration time to develop stable retention factors. (See the below table) During mobile phase equilibration, enantioselective separations are obtained for all analytes, but retention factors are slowly decreased until stable retention factors are obtained.

Acidic Modifier change		Equilibration	D1	Tamata
Before Condition	After Condition	time	Flow rate	Temperature
100% MeOH	84%MeOH in H2O + Perchloric acid (HClO4) 5mM	7 hr	1m1	20 %
(Virgin Column)	84%MeOH in H ₂ O + Sulfuric acid (H ₂ SO ₄) 10mM	/ 111	1111	200
84%MeOH in H2O + Sulfuric acid (H2SO4) 10mM	84%MeOH in H2O + Acetic acid (AcOH) 10mM	3hr	1ml	20°C
84%MeOH in H ₂ O + Acetic acid (AcOH) 10mM	84%MeOH in H ₂ O + Perchloric acid (HClO ₄) 5mM	2hr	1ml	20°C
84%MeOH in H ₂ O + Perchloric acid (HClO ₄) 5mM	84%MeOH in H ₂ O + Sulfuric acid (H ₂ SO ₄) 10mM	2hr	1ml	20°C

DOPA

Column : ChiroSil RCA(+) or SCA(-) 15cm × 4.6mm Mobile Phase : (70/30) CH₃OH/H₂O + 0.01% Phosphoric acid Flow Rate : 1.0 ml/min Detection : UV 210nm Run time : 5.5 min k_1 : 0.97 α : 2.30

Lvsine

Column : ChiroSil RCA(+) or SCA(-) 15cm × 4.6mm Mobile Phase : (70/30) CH₃OH/H₂O + 0.01% Phosphoric acid Flow Rate : 1.0 ml/min Detection : UV 210nm Run time : 5.3 min k_1 : 1.44 α : 1.48

Serine

Column : ChiroSil RCA(+) or SCA(-) 15cm × 4.6mm Mobile Phase : (84/16) CH₃OH/H₂O + 5mM HCIO4 Flow Rate : 0.8 ml/min Detection : UV 210nm Run time : 6.0 min k_1 : 1.37 α : 1.99

α -Amino Acids

Ethionine

Column : ChiroSil RCA(+) or SCA(-) 15cm × 4.6mm Mobile Phase : (75/25) CH₃OH/H₂O + 0.02% Acetic acid Flow Rate : 1.0 ml/min Detection : UV 210nm Run time : 6.2 min k_1 : 1.29 α : 2.07

Tryptophan

Column : ChiroSil RCA(+) or SCA(-) 15cm × 4.6mm Mobile Phase : (70/30) CH₃OH/H₂O + 10mM Acetic acid Flow Rate : 1.5 ml/min Detection : UV 210nm Run time : 11.0 min k_1 : 4.06 α : 2.15

Phenylgycine

Column : ChiroSil RCA(+) or SCA(-) 15cm × 4.6mm Mobile Phase : (70/30) CH₃OH/H₂O + 10mM H₂SO₄ and 0.1% TEA Flow Rate : 1.0 ml/min Detection : UV 210nm Run time : 13.1 min k_1 : 3.14 α : 2.60

RStech Chromatography

Phenylalaine

Column : ChiroSil RCA(+) or SCA(-) 15cm × 4.6mm Mobile Phase : (70/30) CH₃OH/H₂O + 10mM Acetic acid Flow Rate : 1.5 ml/min Detection : UV 210nm Run time : 8.9 min k_1 : 2.66 α : 2.57

Norleucine

Column : ChiroSil RCA(+) or SCA(-) 15cm \times 4.6mm Mobile Phase : (45/55) CH₃OH/H₂O + 10mM Acetic acid Flow Rate : 1.0 ml/min Detection : UV 210nm Run time : 5.6 min k_1 : 1.28 α : 1.75

Arginine

Run time : 4.9 min

 k_1 : 1.21 α : 1.64

Norvaline

Column : ChiroSil RCA(+) or SCA(-) 15cm \times 4.6mm Mobile Phase : (45/55) CH₃OH/H₂O + 10mM Acetic acid Flow Rate : 1.0 ml/min Detection : UV 210nm Run time : 5.3 min k_1 : 1.15 α : 1.79

4-Fluorophenylalaine

Column : ChiroSil RCA(+) or SCA(-) 15cm \times 4.6mm Mobile Phase : (70/30) CH₃OH/H₂O + 10mM Acetic acid Flow Rate : 1.5 ml/min Detection : UV 210nm Run time : 9.6 min k_1 : 2.92 α : 2.56

Tyrosine

Column : ChiroSil RCA(+) or SCA(-) 15cm \times 4.6mm Mobile Phase : (70/30) CH₃OH/H₂O + 10mM Acetic acid Flow Rate : 1.5 ml/min Detection : UV 210nm Run time : 9.1 min k_1 : 2.95 α : 2.38

Methionine

Column : ChiroSil RCA(+) or SCA(-) 15cm \times 4.6mm Mobile Phase : (45/55) CH₃OH/H₂O + 10mM Acetic acid Flow Rate : 1.0 ml/min Detection : UV 210nm Run time : 7.5 min k_1 : 1.64 α : 2.04

Histidine

Column : ChiroSil RCA(+) or SCA(-) 15cm \times 4.6mm Mobile Phase : (45/55) CH₃OH/H₂O + 10mM Acetic acid Flow Rate : 1.0 ml/min Detection : UV 210nm Run time : 26.0 min k_1 : 10.96 α : 1.27

Thyroxine^[8]

Column: ChiroSil Type Mobile phase: 80 % methanol in water + sulfuric acid (5 mM) Flow rate: 0.5 ml/min Detection: 210 nm UV Temperature: 20°C

Leucine

Column : ChiroSil RCA(+) or SCA(-) 15cm \times 4.6mm Mobile Phase : (45/55) CH₃OH/H₂O + 10mM Acetic acid Flow Rate : 1.0 ml/min Detection : UV 210nm Run time : 5.5 min k_1 : 1.03 α : 2.14

Glutamic Acid

Column : ChiroSil RCA(+) or SCA(-) 15cm \times 4.6mm Mobile Phase : (65/35) CH₃OH/H₂O + 0.05% Phosphoric acid Flow Rate : 1.0 ml/min Detection : UV 210nm Run time : 4.5 min k_1 : 0.71 α : 2.27

RStech Chromatography

				1
α -Amino Acids	Structure	<i>k</i> ₁	α	R _S
Alanine		1.37	1.28	1.33
Asparagine		1.31	1.10	0.63
Aspartic acid	HO HO H	1.51	1.22	1.25
Cysteine		1.32	1.10	0.30
Glutamine	H_2N H_2N H_2OH OH OH	1.31	1.32	1.72
Threonine	OH O HOH NH2	0.24	1.42	1.30
Valine		0.40	1.31	1.14

RStech Corporation

Condition

Column: ChiroSil Type Mobile phase: 80% Methanol in H₂O+ sulfuric acid (10mM) Flow rate: 0.5 ml/min Detection: 210 nm UV Temperature: 20 °C

12

α -Amino amides and esters^[1]

R Y NH ₂ R Y		<i>k</i> 1	α	R _S
	NH(CH ₂) ₃ CH ₃	1.60	1.41	2.34
CH	NHC(CH ₃) ₃	1.39	1.42	2.32
Cn ₃	NHCH ₂ C ₆ H ₅	2.58	1.38	2.33
	OCH3	1.36	1.10	0.48
	NH(CH ₂) ₃ CH ₃	0.28	1.64	1.32
CH(CH ₃) ₂	NHC(CH ₃) ₃	0.25	1.59	1.11
	NHCH ₂ C ₆ H ₅	0.46	1.48	1.50
	OCH ₂ CH ₃	0.39	1.33	0.80
	NH(CH ₂) ₂ CH ₃	1.07	2.48	8.15
CH ₂ CH(CH ₃) ₂	NH(CH ₂) ₃ CH ₃	1.03	2.71	8.30
	N(CH ₂ CH ₃) ₂	0.42	1.24	0.94
CH2C6H5	NH(CH ₂) ₂ CH ₃	1.94	2.45	6.99
	NHC(CH ₃) ₃	2.06	2.28	7.36
	NH(CH ₂) ₂ CH ₃	1.55	2.46	7.27
C ₆ H ₅	NHC(CH ₃) ₃	1.28	2.67	6.32
Cons	N(CH ₂ CH ₃) ₂	1.40	3.15	9.77
	OCH ₃	2.10	2.09	6.85
	NHCH ₃	1.73	2.39	8.63
4-CH ₃ O-C ₆ H ₅	NH(CH ₂) ₂ CH ₃	1.59	2.43	7.27
	NHC(CH ₃) ₃	1.35	2.62	7.47

Condition

Column: ChiroSil Type Mobile phase: 80% Methanol in H₂O+ sulfuric acid (10mM) Flow rate: 0.5 ml/min Detection: 210 nm UV Temperature: 20 °C RStech Chromatography

1,2,3,4-Tetrahydro-1-naphthylamine

Column : ChiroSil RCA(+) or SCA(-) $15 \text{cm} \times 4.6 \text{mm}$ Mobile Phase : (84/16) CH₃OH/H₂O + 10mM H₂SO₄ and 0.1% TEA Flow Rate : 1.0 ml/min

Detection : UV 210nm Run time : 3.5 min k_1 : 0.82 α : 1.76

1-Aminoindan

Column : ChiroSil RCA(+) or SCA(-) 15cm × 4.6mm Mobile Phase : (84/16) CH₃OH/H₂O + 10mM HCIO₄ and 0.1% TEA

Flow Rate : 1.0 ml/min Detection : UV 210nm Run time : 4.8 min k_1 : 1.44 α : 1.91

Amines	<i>k</i> ₁	α	R _S	Condition
NH ₂	2.45	1.10	0.80	А
	1.90	1.28	2.57	А
NH ₂	1.38	1.84	5.23	А
	2.86	1.11	1.05	А
NH ₂	1.40	1.11	1.02	А
F-	0.42	1.22	0.82	В
-	0.41	1.11	0.38	В
NH ₂	0.51	1.39	1.69	А
H ₃ CO H ₂	5.21	3.46	12.00	А

Amines^{[2] [10]}

Condition A

Column: ChiroSil Type Mobile phase: 80% Methanol in H₂O+ sulfuric acid (10mM) Flow rate: 0.5 ml/min Detection: 210 nm UV Temperature: 20 °C

Condition B

Column: ChiroSil Type Mobile phase: 50% Methanol in H₂O+ sulfuric acid (10mM) Flow rate: 0.5 ml/min Detection: 210 nm UV Temperature: 20 °C

Amino Alcohols^{[2] [10]}

Amino Alcohols	Structure	<i>k</i> 1	α	R _S	Condition
2-amino-1- phenylethanol	OH NH ₂	1.10	1.40	1.52	В
4-(2-amino-1- hydroxyethyl)phenol	HO HO NH2	0.92	1.19	1.41	В
4-(2 amino-1- hydroxyethyl)benzene -1,2-diol	HO OH NH2	0.90	1.15	1.00	В
4-(2-amino-1- hydroxyethyl)-2- methoxyphenol	HO UCH3	1.25	1.18	1.23	В
2-amino-2- phenylethanol	OH	1.44 (S)	1.35	2.18	А
2-amino-2,3-dihydro- 1H-inden-1-ol	OH NH ₂	1.98 (1R, 2S)	1.78	0.80	А
2-amino-1,2- diphenylethanol	HO NH ₂	0.29 (1S, 2R)	1.53	1.48	С

Condition A

Column: ChiroSil Type Mobile phase: 100% H₂O+ sulfuric acid (10mM) Flow rate: 0.5 ml/min Detection: 210 nm UV Temperature: 20 °C

Condition B

Column: ChiroSil Type Mobile phase: 80% Methanol in H₂O+ sulfuric acid (10mM) Flow rate: 0.5 ml/min Detection: 210 nm UV Temperature: 20 °C

Condition C

Column: ChiroSil Type Mobile phase: 50% Methanol in H₂O+ sulfuric acid (10mM) Flow rate: 0.5 ml/min Detection: 210 nm UV Temperature: 20 °C RStech Chromatography

Column: ChiroSil Type Mobile phase: 0.1 / 0.1 /50/50 acetic acidtriethylamine-methanol-acetonitrile (v/v/v/v) Flow rate: 1 ml/min Detection: 260 nm UV Temperature: 20℃ k_1 : 18.99 α : 1.14

Column: ChiroSil Type Mobile phase: 0.1 / 0.1 /50/50 acetic acidtriethylamine-methanol-acetonitrile (v/v/v/v) Flow rate: 1 ml/min Detection: 260 nm UV Temperature: 20℃ k_1 : 15.16 α : 1.15

Other β-Blockers^[19]

β-Blockers	Structure	<i>k</i> ₁	α	R _S
Alprenolol	O O H	29.35	1.26	2.12
Oxprenolol	OH H	24.61	1.22	2.29
Acebutolol		45.60	1.29	2.90
Bambuterol	H ₃ C _N	22.52	1.85	4.21
Clenbuterol		53.61	1.59	4.37
Clenpropol		48.61	1.13	1.58
Fumoterol	HO HH CH3 CH3 OCH3	98.08	1.23	1.36
Mabuterol		43.07	1.64	5.79

Condition

Column: ChiroSil Type Mobile phase: 0.1 / 0.5 /20/80 trifluoroacetic acid-triethylamine-ethanol-acetonitrile (v/v/v/v) Flow rate: 1 ml/min Detection: 260 nm UV Temperature: 20 °C

RStech Chromatography

Column: ChiroSil Type Mobile phase: 50 % methanol in water + acetic acid(10 mM) Flow rate: 0.5 ml/min Detection: 210 nm UV Temperature: 20℃ k_1 : 1.02 α : 1.37

RStech Corporation

18

 k_1 : 2.16 α : 1.16

Chi	RStech	
omatograp	Chromatograp	

	<
1	9

<i>k</i> ₁	α	R _S
1.33	1.33	1.66
2.38	1.53	2.07
0.67	1.34	1.38

Aryl α -Amino Ketones^[15]

Cathinone

Column: ChiroSil Type Mobile phase: 50 % methanol in water + acetic acid(10 mM) Flow rate: 0.5 ml/min Detection: 210 nm UV Temperature: 20°C k_1 : 3.83 α : 1.16

H_2N Ar Ar		<i>k</i> 1	α	R _S
Ar	K			
C6H5	CH(CH ₃) ₂	0.11	2.12	2.13
C ₆ H ₅	CH ₂ CH(CH ₃) ₂	0.34	1.95	3.11
C ₆ H ₅	CH2CH2SCH3	0.84	1.57	2.29
C6H5	CH2C6H5	1.03	1.55	3.55
4-CH ₃ C ₆ H ₄	CH ₃	1.22	1.55	2.80
4-CH ₃ C ₆ H ₄	CH(CH ₃) ₂	0.16	2.08	1.89
4-CH ₃ C ₆ H ₄	CH2CH(CH3)2	0.31	1.99	2.88
4-CH ₃ C ₆ H ₄	CH2CH2SCH3	0.78	1.65	2.98
4-CH ₃ C ₆ H ₄	CH2C6H5	0.86	1.58	3.09
1-Naphthyl	CH(CH ₃)2	0.25	2.20	3.87
2-Naphthyl	CH(CH ₃) ₂	0.26	2.19	3.77

Condition

Column: ChiroSil Type Mobile phase: 80 % ethanol in water + Sulfuric acid (10 mM) Flow rate: 0.5 ml/min Detection: 210 nm UV Temperature: 20 ℃

Column: ChiroSil Type Mobile phase: 80 % methanol in water + sulfuric acid (5 mM) Flow rate: 0.5 ml/min Detection: 210 nm UV Temperature: 20°C

Tocainide's Analogue	Structure
2-amino-N- phenylpropanamide	O N H NH ₂ CH ₃
2-amino-N- benzylpropanamide	
2-amino-3-methyl-N- phenylbutanamide	N H NH2
2-amino-N-benzyl-3- methylbutanamide	
2-amino-4-methyl-N-(2,6- dimethylphenyl)pentanamide	N-H N-H NH ₂
2-amino-4-methyl-N- phenylpentanamide	
2-amino-N-benzyl-4- methylpentanamide	
2-amino-N,3- diphenylpropanamide	
2-amino-N-benzyl-3- phenylpropanamide	
2-amino-N-(2,6-dimethylphenyl)- 2-phenylacetamide	
2-amino-N,2- diphenylacetamide	N NH2
2-amino-N-benzyl-2- phenylacetamide	

Condition

Column: ChiroSil Type Mobile phase: 80 % methanol in water + sulfuric acid (10 mM). Flow rate: 0.5 ml/min Detection: 210 nm UV Temperature: 20 °C

Tocainide's Analogues

k_1	α	R _S
1.82	1.73	2.52
1.38	1.44	2.10
0.34	2.10	2.56
0.30	1.42	1.00
0.25	1.17	0.25
1.35	5.00	4.00
1.07	2.39	5.50
2.29	3.72	5.33
2.08	2.19	3.29
1.49	2.05	3.52
1.55	3.50	5.50
1.60	2.58	4.89

RStech Chromatography

Gemifloxacin^[7]

Gemifloxacin triflate

Column: ChiroSil Type Mobile phase: 80 % methanol in water + perchloric acid (10 mM) Flow rate: 0.5 ml/min Detection: 254 nm UV Temperature: 20℃ k_1 : 3.49 α : 1.63

Allyl ester of Gemifloxacin

.

Free form of Gemifloxacin

Column: ChiroSil Type Mobile phase: 80 % methanol in water + perchloric acid (10 mM) Flow rate: 0.5 ml/min Detection: 254 nm UV Temperature: 20℃ k_1 : 3.78 α : 1.63

		\bigwedge			Lo~
0	5	10	15	20	

Column: ChiroSil Type Mobile phase: 80 % methanol in water + perchloric acid (10 mM) Flow rate: 0.5 ml/min Detection: 254 nm UV Temperature: 20℃ k_1 : 3.05 α : 1.60

$O_2 N + OH + $	k ₁	α	R _s
CH ₃	6.81	1.20	0.76
(CH ₃) ₂ CH	3.22	1.81	2.81
(CH ₃) ₂ CHCH ₂	4.56	1.57	2.01
C6H3	3.56	1.47	1.49
C6H5CH2	5.11	1.61	1.78
HOCH ₂	21.25	1.06	0.54
CH ₃ (OH)CH	8.85	1.23	0.74
$4-OH-C_6H_4CH_2$	36.20	1.27	0.73

Condition

Column: ChiroSil Type Mobile phase: 0.05 / 0.25 /100 acetic acid-triethylamine-ethanol-acetonitrile (v/v/v) Flow rate: 0.5 ml/min Detection: 254 nm UV Temperature: 20 °C

N-(3-dinitrobenzoyl)- α -Amino Acids^[18]

O_2N H H OH H OH R R	k ₁	α	R _S
CH ₃	5.71	1.14	0.60
(CH ₃) ₂ CH	3.06	1.46	1.40
(CH ₃) ₂ CHCH ₂	4.26	1.45	1.68
C6H3	2.86	1.25	0.97

Condition

Column: ChiroSil Type Mobile phase: 0.05 / 0.25 /100 acetic acid-triethylamine-ethanol-acetonitrile (v/v/v) Flow rate: 0.5 ml/min Detection: 254 nm UV Temperature: 20 °C

RStech Chromatography

N-benzyl- α -Amino Acids^[18]

$O_2 N \xrightarrow{O} R \xrightarrow{H} OH$ $H \xrightarrow{O} OH$ $H \xrightarrow{O} OH$	k_I	α	R _S
(CH ₃) ₂ CH	3.35	1.11	0.41
(CH ₃) ₂ CHCH ₂	3.68	1.14	0.55

Condition

Column: ChiroSil Type Mobile phase: 0.05 / 0.25 /100 acetic acid-triethylamine-ethanol-acetonitrile (v/v/v) Flow rate: 0.5 ml/min Detection: 254 nm UV Temperature: 20 °C

RStech covers various technologies from synthesis of chiral intermediates to chiral separation & analysis

6. References

1. Myung Ho Hyun, Jong Sung Jin and Wonjae Lee, "Liquid Chromatographic Resolution of Racemic Amino Acids and Their Derivatives on a New Chiral Stationary Phase Based on Crown Ether", J. Chromatogr. A, 822(1), 155-161 (1998)

2. Myung Ho Hyun, Jong Sung Jin, Hye Jin Koo and Wonjae Lee, "Liquid Chromatographic Resolution of Racemic Amines and Amino Alcohols on a Chiral Stationary Phase Derived from Crown Ether", J. Chromatogr. A, 837, 75-72 (1999)

3. Myung Ho Hyun, Sang Cheol Han, Jong Sung JIn and Wonjae Lee, "Separation of the Stereoisomers of Racemic Fluoroquinolone Antibacterials on an HPLC Chiral Stationary Phase Based on Chiral Crown Ether", Chromatographia, 52(7-8), 473-476, 2000.

4. Jong Sung Jin, Apryll M. Stalcup, Myung Ho Hyun,

"The Impact of Triethylamine as a Mobile Phase Additive on the Resolution of Racemic Amino Acids on an (+)-18-Crown-6tetracarboxylic Acid-derived Chiral Stationary Phase", J. Chromatogr. A, 933(1-2), 83-90, 2001.

5. Myung Ho Hyun and Jong Sung Jin, Sang Cheol Han and Yoon Jae Cho, "The Effect of Analyte Lipophilicity on the Resolution of α -Amino Acids on an HPLC Chiral Stationary Phase Based on Crown Ether", Microchemical Journal, 70, 205-209, 2001.

6. Myung Ho Hyun, Yoon Jae Cho and Jong Sung Jin, "Liquid Chromatographic Direct Resolution of β -Amino Acids on a Chiral Crown Ether Stationary Phase", J. Separation Science 25 (10-11), 648-652, 2002.

7. Myung Ho Hyun, Sang Cheol Han, Yoon Jae Cho and Jong Sung Jin, Wonjae Lee, "Liquid Chromatographic Resolution of Gemifloxacin Mesylate on a Chiral Stationary Phase Derived from Crown Ether", Biomed. Chromatogr. 16, 356-360, 2002.

8. Hassan Y. Aboul-Enein, Imran Ali, Myung Ho, Yoon Jae Cho and Jong Sung Jin, "Effect of acidity on the enantiomeric resolution of thyroxine and tocainide by HPLC on a (+)-(18-crown-6)-2, 3, 11, 12tetracarboxylic acid column", J. Biochem. Biophy. Meds. 54(1-3), 407-413, 2002.

9. Robert J. Steffeck, Yury Zelechonok and Kyung H. Gahm, "Enantioselective separation of racemic secondary amines on a chiral crown ether-based liquid chromatography stationary phase", J. Chromatogr. A 947(2), 301-305, 2002 · SHORT COMMUNICATION

10. Myung Ho Hyun, Yoon Jae Cho, Jin Ah Kim and Jong Sung Jin, "Preparation and Application of a New Modified Liquid Chromatographic Chiral Stationary Phase Based on (+)-(18-Crown-6)-2, 3, 11, 12-tetracarboxylic Acid", J. Chromatogr. A, 984(2), 163-171, 2003.

11. Myung Ho Hyun, Yoon Jae Cho, Jin Ah Kim and Jong Sung Jin, "Effect of the Tethering Groups of Chiral Stationary Phases Based on (+)-(18-Crown-6)-2, 3, 11, 12-tetracarboxylic Acid on the Liquid Chromatographic Resolution of β-Amino Acids", J. Liq. Chromatogr. & Rel. Tech. 26 (7), 1081-1092, 2003.

12. Myung Ho Hyun, Hye Jung Min and Yoon Jae Cho,

"Resolution of Tocainide and Its Analogues on Liquid Chromatographic Chiral Stationary Phases Based on (+)-(18-Crown-6)-2, 3, 11, 12 -tetracarboxylic Acid", Bull. Kor. Chem. Soc. 24, 911-915, 2003.

13. Myung Ho Hyun, Young Hwa Kim and Yoon Jae Cho,

"Effect off the Protection of the Residual Aminopropyl Groups of a Chiral Stationary Phase Based on (+)-(18-Crown-6)-2, 3, 11, 12-tetracarboxylic Acid on the Chiral Resolution Behaviors", Bull .25, pp 400 -402 (2004)

14. Myung Ho Hyun and Do Hun Kim,

"Spacer Length Effect of a Chiral Stationary Phase Based on (+)-(18-Crown-6)-2, 3, 11, 12-tetracarboxylic acid", Chirality 16, pp294-301 (2004)

15. Myung Ho Hyun, Guanghui Tan and Yoon Jae Cho,

"Liquid Chromatographic Resolution of Aryl α -Amino Ketones on Chiral Stationary Phases Based on (+)-(18-Crown-6)-2, 3, 11, 12- tetracarboxylic acid", J. Lig. Chromatogr. Rel. Tech. 27(11), pp1671-1690 (2004)

16. Myung Ho Hyun and Yoon Jae Cho,

"Preparation and application of a chiral stationary phase based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid without extra free aminopropyl groups on silica surface", J. Separation Science. 28(1), 31-38 (2005)

17. Uwe Conrad, Bezhan Chankvetadze, Gerhard K. E. Scriba,

"High performance liquid chromatographic separation of dipeptide and tripeptide enantiomers using a chiral crown ether stationary phase", J. Separation Science. 28, 2275-2281 (2005)

18. Myung Ho Hyun, Guanghui Tan and Jin Ying Xue,

"Unusual resolution of N-(3, 5-dinitrobenzoyl)- α -amino acids on a chiral stationary phase based on (+)-(18-crown-6)-2, 3, 11, 12-tetracarboxylic acid", Journal of Chromatography A, In Press, Corrected Proof, Available online 2 November 2005, SHORT COMMUNICATION

19. Dandan Zhang, Famei Li, Do Hun Kim, Hee Jung Choi and Myung Ho Hyun,

"Resolution of β -blockers on a chiral stationary phase based on (+)-(18-crown-6)-2, 3, 11, 12-tetracarboxylic acid: Unusual temperature effect", J. Chromatogr. A, 1083(1-2), 89-95, 2005 · ARTICLE

Product Name	CSPs, Particle size	dimension
CH RCA(+)-51001021	Chirosil RCA(+), 5micron, 100	100mm x 2.1mm
CH RCA(+)-51001521	Chirosil RCA(+), 5micron, 100	150mm x 2.1mm
CH RCA(+)-51001546	Chirosil RCA(+), 5micron, 100	150mm x 4.6mm
CH RCA(+)-51002546	Chirosil RCA(+), 5micron, 100	250mm x 4.6mm
CH RCA(+)-51002510	Chirosil RCA(+), 5micron, 100	250mm x 10.0mm
CH RCA(+)-51002520	Chirosil RCA(+), 5micron, 100	250mm x 21.1mm
CH RCA(+)-101001546	Chirosil RCA(+), 10micron, 100	150mm x 4.6mm
CH RCA(+)-101002546	Chirosil RCA(+), 10micron, 100	250mm x 4.6mm
CH RCA(+)-101002510	Chirosil RCA(+), 10micron, 100	250mm x 10.0mm
CH RCA(+)-101002520	Chirosil RCA(+), 10micron, 100	250mm x 21.1mm
CH SCA(-)-51001021	Chirosil SCA(-), 5micron, 100	100mm x 2.1mm
CH SCA(-)-51001521	Chirosil SCA(-), 5micron, 100	150mm x 2.1mm
CH SCA(-)-51001546	Chirosil SCA(-), 5micron, 100	150mm x 4.6mm
CH SCA(-)-51002546	Chirosil SCA(-), 5micron, 100	250mm x 4.6mm
CH SCA(-)-51002510	Chirosil SCA(-), 5micron, 100	250mm x 10.0mm
CH SCA(-)-51002520	Chirosil SCA(-), 5micron, 100	250mm x 21.1mm
CH SCA(-)-101001546	Chirosil SCA(-), 10micron, 100	150mm x 4.6mm
CH SCA(-)-101002546	Chirosil SCA(-), 10micron, 100	250mm x 4.6mm
CH SCA(-)-101002510	Chirosil SCA(-), 10micron, 100	250mm x 10.0mm
CH SCA(-)-101002520	Chirosil SCA(-), 10micron, 100	250mm x 21.1mm
CH RCA(+)-Guard	Chirosil RCA(+), 5micron, 100	10.0mm x 4.0mm
CH SCA(-)-Guard	Chirosil SCA(-), 5micron, 100	10.0mm x 4.0mm

*Guard holder

7. Product list