

HydrocleanTM - SPE Method Development

SPE Polymer Phase Selection

Jordi solid phase extraction cartridges allow for separations by reverse phase, normal phase, anion exchange, cation exchange and mixed modes.

JORDI

The diagram below is intended to simplify the process of selecting the right SPE product for your application.

Jordi SPE Method Development

Choosing the Right Cartridge

Polymeric Sorbents—polymeric resins provide larger surface area than silica-based resins, offering higher capacity on the order of 10-15% of the resin mass. This allows for the use of smaller bed volumes and improved detection limits.

Ion Exchange Sorbents—the number of charged sites on the resin available to interact with the analyte determines capacity.

Tip: Choosing a slightly larger resin mass is advisable, since most SPE samples are loaded with contaminants and interferences

Resin Bed Volume—interstitial volume plus pore volume

The resin bed volume controls the minimum solvent volume in an SPE method. To successfully condition, wash and elute from the cartridge, using solvent volumes 4 to 8 times that of the sorbent bed is typically sufficient. Using less than 4 to 8 sorbent bed volumes contributes to incomplete solvation and low, inconsistent recoveries.

Tip: Polymeric SPE products usually require 200-250 uL per 100 mg of sorbent

Jordi SPE Method Development

General SPE Methods

	Reversed Phase SPE Method		Normal Phase SPE Method		Ion Exchange SPE	
Sorbent	DVB, HRP		Glucose, HRP		Anion Exchange (HRP-AX) Cation Exchange (HRP-CX)	
Analyte Properties	• Non-polar to moderately polar Hydrophobic • Neutral	Pharmaceuti- cals, pesticides, herbicides	• Moderate to highly polar • Neutral	Pesticides	Charged/Ionized compounds	 Anion exchange (acidic) analytes Cation exchange (basic) analytes
Sample/ Matrix	Aqueous—diluted with buffer	Biological fluids, water	Non-polar to moder- ately polar organic	Hexane, chloro- form, petroleum ether, toluene or methylene chloride	Aqueous—low ionic strength buffers (<30mM), pH adjusted	Biological fluids with buffer
Conditioning	 Solvation: polar or- ganic solvents Equilibration: aqueous/ buffer solutions 	1. Methanol 2. Water or buffer	Solvation— sample/ matrix solvent	Hexane or chloro- form	 Conditioning—polar organic solvents Equilibration—low ionic strength buffers, pH adjusted 	1. Methanol 2. Water 3. 0.1M HCL
Washing	Aqueous buffer plus 5-50% polar organic solvent	Methanol/water (1:9)	Non-polar organic solvents with 1-5% of moderate to low polar- ity organic solvents	Hexane with 1% THF, ethyl acetate, acetone, acetonitrile or IPA	Aqueous buffers of low ionic strength with organic solvent (optional)	1. Anion exchange Methanol, 0.5M HCl, Acetic Acid 2. Cation exchange DCM/IPA/NH ₄ OH (78:20:2)
Elution	Polar or non-polar organic solvent(s) plus (optional): • Water buffer solution • Strong acid or base	Methanol with Ammonium Acetate	Non-polar organic solvents containing 5-50% of moderate to high polarity organic solvents	Hexane with 10% THF, ethyl acetate, acetone, acetonitrile or IPA	 Neutralize weak anion or cation Increase ionic strength and counter ion concentration Add strong counter ion displacer 	1. Anion exchange Methanol, 0.5M HCl, Acetic Acid 2. Cation exchange DCM/IPA/NH ₄ OH (78:20:2)

Sorbent Wash and Elution Solvent Volumes*						
Polymeric Sorbent Mass	Minimum Recommended	Maximum Recommended				
	Solvent Volumes	Solvent Volumes				
10 mg	100 uL	200 uL				
30 mg	300 uL	600 uL				
60 mg	600 uL	1.2 mL				
200 mg	2 mL	4 mL				
1 g	10 mL	20 mL				

*Polymeric gels provide larger surface area that requires larger solvent volumes per gram of sorbent. Elution volumes depend on the chemical nature of the analyte, its relative concentration in the matrix, the chemistry of the solution solvent and the sorbent bed mass. Please be advised that the table above outlines a generic SPE method. Call the experts at Jordi for a consultation today.