© Advanced Chromatography Technologies Ltd. www.ace-hplc.com

Amphetamines In Urine by LC-MS/MS

ACE Excel SuperC18, 3um, 75 x 2.1 mm Gradient analysis

MP A: 5n	nM Ammonium Hydroxide, pH 10.8			
MP B: 5mM Ammomnium Hydroxide, pH 1				
in 1:9 v/v	v H2O:MeOH.			
0.6mL/m	in			
Т	%В			
0	30			
8	95			
60C, 2uL.				
Varian 32	20 Triple Quadrupole MS			
Electrosp	oray voltage: +5 kV			
Inlet capi	illary voltage: 30 V			
CID with	argon at 1.5 mTorr; Collision cell			
potential	ranges from 5 to 17 V			

Drying gas (nitrogen) temperature: 325 C Nebulizing gas (nitrogen) pressure: 35 psi Extended Dynamic Range

Compound	Q1 Mass	Q3 Mass
(dl)-3,4-MDMA	193.7	163.0
Phenylpropanolamine	151.6	134.0
(d)-Amphetamine	135.8	90.9
(I)-Ephedrine	166.2	148.0
(dl)-3,4-MDA	179.7	163.0
(±)-MDEA	207.7	163.0
4-methylthioamphetamine	182.2	165.0

.8

Opiates In Urine by LC-MS/MS

© Advanced Chromatography Technologies Ltd. www.ace-hplc.com

> ACE Excel SuperC18, 3um, 75 x 2.1 mm + guard Gradient analysis

MP A: 5mM Ammonium Hydroxide, pH 10.8. MP B: 5mM Ammonium Hydroxide, pH 10.8 in 1:9 v/v H2O:MeOH. 0.6mL/min T %B 0 5 5 95 60C, 2uL.

Varian 320 Triple Quadrupole MS Electrospray voltage: +5 kV Inlet capillary voltage: 30 V CID with argon at 1.5 mTorr; Collision cell potential ranges from 5 to 17 V Drying gas (nitrogen) temperature: 325 C Nebulizing gas (nitrogen) pressure: 35 psi Extended Dynamic Range

Q1 Mass	Q3 Mass
462.0	285.9
272.0	165.0
462.0	285.9
328.0	164.9
286.0	200.9
	Q1 Mass 462.0 272.0 462.0 328.0 286.0

Synthetic Cannabinoids (SPICE) From Oral Fluid

Extracted ion chromatogram for SPICE analytes fortified in neat

ACE Excel C18-AR 100x2.1mm, 2µm Isocratic analysis 15:85 v/v A:B A = 0.1% v/v formic acid (aq) B = 0.1% v/v formic acid in MeOH Ambient 0.3mL/min Applied Biosystems / MDS Sciex 4000 Q-Trap Positive mode Turbo Ionspray®

Retention Time (minutes)	Analyte	MRM Transition	Declustering Potential (DP)	Collision Energy (CE)	Cell Exit Potential (CXP)
2.55	JWH-250 N-(5- hydroxypentyl)	352>120.9	40	30	16
2.99	JWH-073 N-(3- hydroxybutyl)	344>155	40	30	16
3.00	UR-144 5- Hydroxy-pentyl	328.5>125	30	35	16
3.03	UR-144 Pentanoic Acid	342.5>125	30	35	16
3.14	d5-JWH-018 N- (4-hydroxypentyl	363.5> 155	40	35	16
3.14	JWH-018 N- (4- hydroxypentyl	358> 155	40	30	16
3.34	JWH-018 5- pentanoic acid	372>155	40	30	16
3.98	JWH-200	385>155	40	30	16
4.69	XLR-11	330>125	30	35	16
5.32	JWH-250	336>121	40	30	16
6.36	JWH-073	328>155	40	30	16
6.37	UR-144 5-Chloro- pentyl	346.9>125	30	35	16
6.55	UR-144	312.5>125	30	35	16
8.14	JWH-018	342>155	40	30	16

N JWH-200

All trademarks are recognised. Reproduced with permission of Dr Victor Vandell, Biotage®, Charlotte, NC, USA. See Biotage Application note AN791 for further details of extraction & analysis.

LC-MS/MS of Acylcarnitines

Reproduced with permission of Dr Timothy Garrett, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, USA

Corticosteroids by LC-MS/MS

© Advanced Chromatography Technologies Ltd. www.ace-hplc.com

UHPLC-MS/MS method for aminoglycosides in eggs

Extraction at low pH, clean-up with WCX SPE cartridge

Egg sample spiked at $100\mu g/kg$ (CC α)

Ke	
----	--

- GNT Gentamicin
- TBM Tobramycin
- KNM Kanamycin
- DHS Dihydrostreptomycin
- STR Streptomycin
- HGB Higromycin-B
- SPT Spectinomycin

ACE Excel C1	8-PFP	, 2µm, 100 x 2.1mm			
Gradient analysis					
A = 20 mM HF	<mark>BA in F</mark>	I ₂ O/CH ₃ CN (98:2)			
<mark>B = 20mM HF</mark>	<mark>BA in C</mark>	H ₃ CN/H ₂ O (98:2)			
<mark>Time (mins) %</mark>	Β Οι	irve			
0	5	-			
2	15	6			
4.5	19	6			
5.5	19.5	8			
6	22	6			
7	35	6			
9	48	8			
9.5	5	6			
Flow rate: 0.4ml/min					
Column temperature: 40°C					
Positive ESI MRM (transitions as shown)					

Reproduced with permission of Veterinary Drug Residues Department, Centro Nacional de Alimentacion (CAN, AECOSAN), Madrid, Spain

Pesticides by LC-MS/MS

Reproduced with permission of Barry Whatmore, Kent Scientific Services

ACE UltraCore SuperC18, 2.5µm, 50 x 2.1mm Gradient analysis

A = 0.1% HCOOH + 5mM NH₄CO₂H in 9:1 v/v H₂O: MeOH B = 0.1% HCOOH + 5mM NH₄CO₂H in 1:9 v/v H₂O: MeOH

Flow Rate: 0.4ml/min	Gradient con	ditio	ns				
Temperature: 40°C	Time (mins)	0	1	15	18	18.05	20
Injection volume: 20µl	%B	0	0	100	100	0	0

Agilent 6420 Triple Quadrupole MS, +ve mode ESI Dynamic MRM

Also analysed under same conditions: Acephate Acetamiprid Aldicarb Aldicarb sulphone Aldicarb sulphoxide Benomyl Carbendazim Carbofuran Clofentezine Clothianidin Cyfluthrin **Demeton S-methylsulphone** Demeton S-methylsulphoxide Dicrotophos Dimethoate Dinotefuran DMA DMPF Flubendiamide Folpet Formetanate

Hexaconazole Hexaflumuron Imidacloprid Indoxacarb Mandipropamid Methamidophos Methomyl Monocrotophos Nicotine Omethoate Oxamyl Pencycuron Prochloraz Propargite Thiabendazole Thiacloprid Thiamethoxam Thiodicarb Thiophanate methyl Triforine

Veterinary Steroids by LC-MS/MS

Taleranol and zeranol Zearalenone Hexestrol Diethylstilbestrol Dienestrol ACE UltraCore SuperC18, 2.5um, 100 x 2.1mm Waters Acquity SDS system **Gradient analysis** A = 0.01mM amm. fluoride + 0.001% formic acid **B** = Acetonitrile Time (mins) Time (mins) **%B** %B 25 7.5 35 0 25 0.5 10.5 60 7.0 35 Flow rate: 0.5ml/min Column temperature: 45°C **Positive or negative ESI MRM** data

Also analysed in the same run (-ESI):

Taleranol and zeranol-d4

Also analysed in the same run (+ESI): Hydroxystanazolol Hydroxystanazolol-d3 Methyltestosterone Methyltestosterone-d3 β-Nortestosterone-d3 β-Trenbolone α-Trenbolone

Reproduced with permission of George Stubbings, The Food and Environment Research Agency, UK

Taxol in Fungal Extract by LC-MS/MS

Reproduced with permission of Dr Christopher Arthur, University of Bristol

© Advanced Chromatography Technologies Ltd. www.ace-hplc.com

Microbial Extract by LC-MS

Reproduced with permission of Dr Lijiang Song, Department of Chemistry, University of Warwick, UK

Cytotoxic Agents by UHPLC-MS/MS

Thermo Scientific	: Accela L	JHPLC
ACE UltraCore Su	uperC18,	2.5μm, 100
x 2.1mm	- -	•
Gradient analysis	5	
A = 0.1% formic a	<mark>icid in wa</mark>	ter
B = 0.1% formic a	<mark>icid in ace</mark>	etonitrile
Time (mins)	%B	
0	2	
1	2	
3	80	
5	80	
5.1	2	
8	2	
Flow rate: 0.25ml	/min	

Thermo Vantage triple quadrupole MS MRM +ve ESI mode Spray voltage: 3500V Nitrogen sheath and auxiliary gas CID with argon at 1.5 mTorr

Peptides in saliva

Reproduced with permission of Birthe Nielsen, School of Science, University of Greenwich, UK

Polycyclic Tetracarboxylic Acids

Microcystins From Blue/Green Algae In Drinking Water

ACE Excel 2 μm C18, 100 x 2.1 mm

Druker Advance URPLC System				
ACE Excel 2µm C18, 100 x 2.1mm				
Gradient elution				
A = 0.1%	formi	<mark>c acid in w</mark>	ater	
B = Aceto	onitrile	;		
T (mins)	%B	T (mins)	%B	
0	30	7.1	30	
1	30	10	30	
7	95			
Flow rate	: 0.4m	nL/min		
Column temperature: 40°C				
Injection volume: 50µL				
Concentration each microcystin: 0.05ppb				

Advance LILIDI C evet

Bruker EVOQ Elite triple quad MS VIP heated-ESI temperature: 350°C Cone gas temperature: 200°C Spray voltage: 4500V (+) Collision gas: argon 1.5mTorr

Alcohol Biomarkers by LC-MS/MS

Fluoride counter-ion thought to enhance negative ESI response Detection limit ~ 1ng/ml in oral fluid

Reproduced with permission of Biotage GB Ltd, UK

Analyte

Peak ID

Perfluoro acids by LC-MS/MS

AB SCIEX triple quad 5500 Negative ESI MRM Source temperature: 450°C IonSpray voltage: -2400V

Pristinamycin components in plasma by LC-MS/MS

Pristinamycin antibiotic is a mixture of 2 components – pristinamycin IA and IIA Virginiamycin used as internal standard

Processed study sample containing pristinamycin IA and IIA

Low calibration standard containing 2.5ng/ml each of pristinamycin IA and IIA in human NaF/K $_2$ C $_2$ O $_4$ plasma

Reproduced with permission of inVentiv Health Clinical, Quebec, Canada

Pristinamycin IA

Pristinamycin IIA

ACE 3 C18 3µ	<mark>m, 30 x 3.</mark>	0mm			
Gradient analys	Gradient analysis				
$A = 1 \text{mM NH}_4 C$	O ₂ H + 0.1	%			
HCO ₂ H in 65:3	<mark>5 H₂O:CH</mark>	₃ CN			
$B = CH_3CN$					
T (mins) %B	<mark>୮ (mins) </mark>	6 <mark>В</mark>			
0 0	1.61	100			
0.3 0	2.6	100			
0.31 10	2.61	0			
1.6 10	4	0			
Flow rate: 1ml/r	nin				
Column temper	ature: 25°	°C			
Injection volum	e: 10µl				
MDS Sciex API 4000					
TurbolonSpray	positive n	node			

Transitions monitored: Pristinamycin IA $867.5 \rightarrow 134.2$ Pristinamycin IIA $526.3 \rightarrow 355.1$ I.S. (Virginiamycin) $824.6 \rightarrow 134.0$

15-Hydroxy Lubiprostone in Human Plasma

Lubiprostone, a fatty acid derived from prostaglandin E1, is rapidly metabolised to 15-hydroxy lubiprostone. Quantitation is based on 15-hydroxy lubiprostone, with the d4 analogue as internal standard

Lowest calibration standard sample containing 2.0pg/ml in human EDTA K3 plasma

15-Hydroxy lubiprostone MW 392.5

ACE Excel 2 C18 2µm, 50 x 3.0mm Isocratic analysis A = 0.1% formic acid in water B = Acetonitrile Flow rate: 0.65ml/min Column temperature: 35°C Injection volume: 15µl MDS Sciex API 5000 TurbolonSpray negative mode IonSpray voltage: -4500V Source temperature: 450°C Transitions monitored: 15-Hydroxy lubiprostone 391.2 \rightarrow 373.2 I.S. (15-Hydroxy lubiprostone-d4)

 $395.2 \rightarrow 377.2$

Dermorphin in Equine Urine by LC-MS/MS

ACE 3 C	<mark>18 (3µ</mark>	<mark>m, 100 x</mark> :	2.1mm)			
Gradient	analys	sis				
A = 0.2%	formi	<mark>c acid in v</mark>	vater			
B = 0.2%	formi	<mark>c acid in a</mark>	cetonitrile			
T (mins)	%B	T (mins)	%B			
0	5	8.5	95			
0.2	5	8.51	5			
8	95	12.5	5			
Flow rate: 0.4ml/min						
Injection	Injection volume: 40µl					

Bruker EVOQ Elite triple quad MS VIP heated-ESI temperature: 350°C Cone gas temperature: 250°C Spray voltage: +4000V

Reproduced with permission of Bruker UK Ltd (Bruker Application Note #704423)

ACE[®] HPLC / UHPLC Columns

© Advanced Chromatography Technologies Ltd. www.ace-hplc.com

Clenbuterol in Equine Plasma by LC-MS/MS

Reproduced with permission of Bruker UK Ltd (Bruker Application Note #704055)

Sustained high sensitivity performance under repeated exposure to horse plasma samples. Clenbuterol in crashed horse plasma injected by dilute and shoot method.

ACE 3 C18 (3µm, 100 x 2.1mm) **Gradient analysis** A = 0.2% formic acid in water B = 0.2% formic acid in acetonitrile T (mins) %B T (mins) %B 0 10 2.8 10 0.3 10 4.5 10 2.5 95 Flow rate: 0.45ml/min Injection volume: 30µl

Bruker EVOQ Elite triple quad MS VIP heated-ESI temperature: 300°C Cone gas temperature: 300°C Spray voltage: +3500V

Transitions: Clenbuterol $m/z 277.1 \rightarrow 168$ d9-Clenbuterol $m/z 286.1 \rightarrow 204$ (Internal Standard)

Reproduced with permission of Foodomics Laboratory, CIAL-CSIC, Madrid, Spain

ACE C18, 3µm, 100 x 2.1mm **Gradient analysis** A: 10mM ammonium acetate (aq), pH 4.5 B: 0.1% acetic acid in methanol C: 0.3% acetic acid in methanol TSQ triple quad MS; SRM mode Detection: -ESI for vitamin C

+ESI for B vitamins

Analyte	Transition m/z	LOQ (ng/mL)
Ascorbic acid (Vit C)	174.9 → 115.2	128.3
Thiamine (Vit B1)	265.1 → 122.1	2.4
Pyridoxine (Vit B6)	169.9 → 152.1	0.6
Nicotinamide (Vit B3)	123.0 → 80.3	13.2
Pantothenic acid (Vit B5)	220.0 → 202.1	23.3
Folic acid (Vit B9)	442.0 → 294.9	1.9
Riboflavin (Vit B2)	377.1 → 243.0	0.2
Hippuric acid (IS)	180.1 → 105.2	14.9

Pravastatin and Isomers by LC-MS/MS

All 3 compounds have MW 424

MS/MS conditions alone insufficient for selective quantitation

Baseline separation important

ACE C18 3 µm, 50 x 3.0 mm Isocratic analysis Acetonitrile-Methanol-THF-Water-Acetic acid (15:20:5:60:0.1) Flow rate: 0.6 ml/min Column temperature: Ambient Injection volume: 2 µl Sample: 1 µg/ml each isomer

API 3000 triple quad MS TurbolonSpray – negative mode Extracted ion chromatogram of MRM m/z 423.3 → 321.1

Cytarabine Analogues by Ion-Pairing LC-MS/MS

Reproduced with permission of Agilux Laboratories, USA

LC-MS/MS of phytoestrogens from hop extracts

Ethyl Glucuronide in Water by LC-MS/MS

EtG 100pg/ml

Ethyl glucuronide

LOQ for EtG in water = 300fg on-column

ACE Excel 2 C18-PFP 2µm, 100 x 2.1 mm **Gradient analysis** A = 0.05% formic acid in water B = Methanol T (mins) %B T (mins) %B 70 7 95 4 6 95 7.01 5 Flow rate: 0.4 ml/min Injection volume: 3 µl Column temperature: 40°C Shimadzu LCMS-8050 ESI voltage: -3kV **Desolvation line: 250°C** Interface heater: 380°C Nebulizing gas: 3 l/min Heat block: 400°C

Ethyl glucuronide-d5 (EtG-d5)

EtG-d5 100pg/ml

Arsenolipids from Edible Seaweed by LC-ICP-MS and LC-ESI-MS

Separation of arsenic species from methanolic extract of the edible seaweed Alaria esculenta

Arsenic-containing hydrocarbon: m/z 389 [M + H]+ for $C_{21}H_{46}AsO$

Arsenic-containing phospholipids:

m/z 959 [M + H]+ for $C_{45}H_{89}AsO_{14}P$ (C16:0/C16:0) m/z 987 [M + H]+ for $C_{47}H_{93}AsO_{14}P$ (C18:0/C16:0) m/z 1015 [M + H]+ for $C_{49}H_{97}AsO_{14}P$ (C20:0/C16:0)

ACE C18, 3μ m Gradient analysi A = 0.1% formic B = 0.1% formic Time (mins) % 0 20 45 Flow rate: 1ml/m Injection volume Split ratio: 75%	150 x 4.6mm s acid in H ₂ O acid in CH ₃ OH B 0 100 100 100 hin ε: 100μl ESI-MS: 25% ICP-MS
Thermo Scientific Element 2 ICP-MS Mode: Organic mode Medium resolution	
Thermo Scientific Orbitrap Discovery Positive ESI mode Spray voltage: 4.5kV Capillary temperature: 320°C Capillary voltage: 42V	

Reproduced with permission of Dr Andrea Raab, Trace Element Speciation Laboratory, University of Aberdeen, UK

Chloramphenicol in Milk by LC-MS/MS

Organophosphorus Flame Retardants in Water by LC-MS/MS

Reproduced with permission of Ontario Ministry of the Environment and Climate Change, Canada

ACE UltraCore SuperC18: Impurity Profile of a Herbicide

54.87

M

55.00

- Time