# **Translating US Pharmacopoeia Methods to** Sub-2 Micron and Solid Core Using the New **USP <621> General Chapter Guidelines**

**UHPLC and HPLC Columns** 

## Alan P McKeown<sup>1</sup>, Geoffrey Faden<sup>2</sup>

<sup>1</sup>Advanced Chromatography Technologies Ltd, 1 Berry Street, Aberdeen, Scotland, AB25 1HF UK <sup>2</sup>MACMOD Analytical Inc., 103 Commons Court, PO Box 587, Chadds Ford, PA 19317 USA

Original

Method ACE 10 µm C18

300 x 3.9 mm

30,000

1.0

25

4.8

0.1

System Suitability

Savings Achieved

Translated

Method

C18 150 x 4.6 mm

30,000

1.39

17.4

4.0

0.1

ACE Excel 5 µm

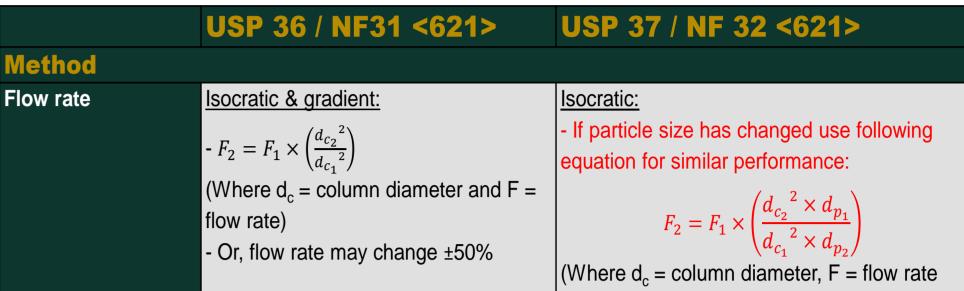
**1. Introduction – Monograph Testing** 

- Ensures the safety and quality of pharmaceutical products and can include an LC test typically for assay or purity
- Many monographs use legacy column formats (e.g. 250 x 4.6 mm, 10 µm)
- Advances in column technology (sub 2-micron fully porous and solid core particles) and small column formats (e.g. 50 x 3.0 mm) allow substantial improvements in productivity and large cost savings

**2. New USP <621> Guidelines: Mobile and Stationary Phase** 

|                   | USP 36 / NF31 <621>                                                                             | USP 37 / NF 32 <621>                                                                                  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|
| Mobile phase      |                                                                                                 |                                                                                                       |  |  |
| Composition       | Isocratic & gradient:<br>- Minor components can be changed<br>by ±30% relative or ±10% absolute |                                                                                                       |  |  |
| рН                | Isocratic & gradient:<br>- ±0.2 units (1% for neutrals)                                         | Isocratic & gradient:<br>±0.2 units                                                                   |  |  |
| Ionic strength    | Isocratic & gradient:<br>- ±10% if the permitted pH variation is<br>met                         | Isocratic & gradient:<br>- ±10% if the permitted pH variation is met                                  |  |  |
| Column            |                                                                                                 |                                                                                                       |  |  |
| Length            | Isocratic & gradient:<br>- ±70%                                                                 | Isocratic:- Particle size $(d_p)$ and length (L) may bechanged if a) L/d_p is constant or varies -25% |  |  |
| Particle size     | Isocratic & gradient:<br>-50%                                                                   | to +50% OR b) number of plates (N) is -25%<br>to +50%<br><u>Gradient:</u><br>- No changes             |  |  |
| Internal diameter | Isocratic & gradient:<br>- Any changes if linear velocity kept<br>constant<br>- ±25%            | Isocratic:<br>- Any changes if linear velocity kept constant<br>Gradient:<br>- No changes             |  |  |

L/dp


Flow (mL/min)

Injection Vol. (µL)

Rs between B and C > 2.0

6RSD multiple injections <2.0

**3. New USP <621> Guidelines: Operating Conditions** 



- However, allowable changes in column formats specified within monographs have previously been tightly restricted
- For isocratic methods, the revised USP <621> (general chapter on chromatography) now provides improved flexibility to the chromatographer to use modern column technology as allowable changes to the LC method
- This poster summarises the recent changes and demonstrates how to achieve productivity and cost savings using both HPLC and UHPLC technology

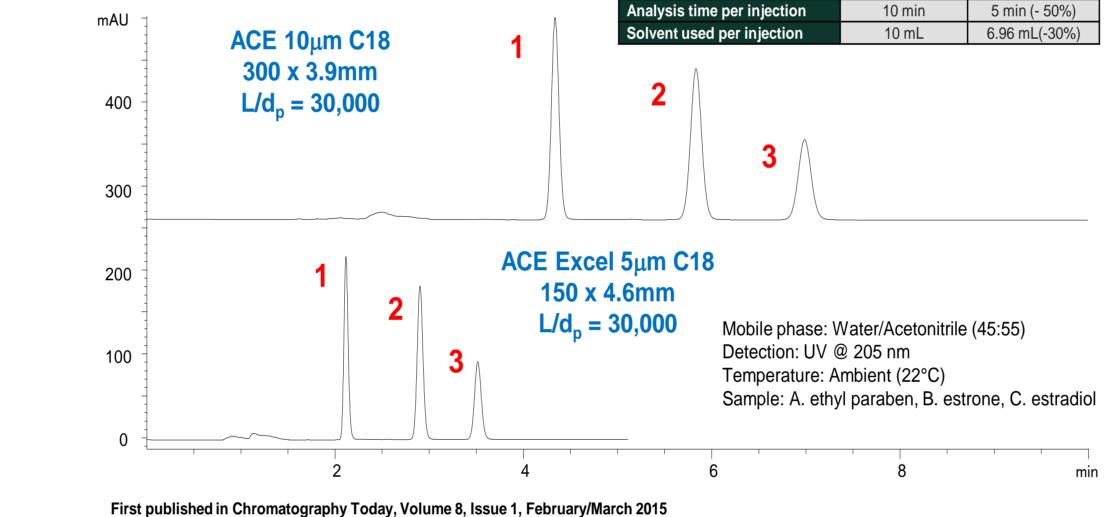
#### **4. Translating Isocratic Methods and L/d<sub>p</sub> Approach**

- New USP <621> guidelines allow two options for changing the particle size  $(d_p)$ and column length (L):
  - 1. Keep  $L/d_p$  constant or within -25% to +50% of the original method
  - 2. Keep N constant or within -25% to + 25% of the original method

#### This work explores the use of option 1.

For successful translation of isocratic LC methods, the following principles are applied:

Translation of flow rate: Scaled to new column i.d.  $(d_c)$  to maintain linear velocity


or scaled to new column i.d. and smaller d<sub>r</sub>

#### **5. Example 1: USP Estradiol Assay**

Translating method from 10 µm to 5 µm Column dimensions scaled (maintain  $L/d_{p}$ ) Column Flow rate scaled (constant linear velocity)

• Inj. Volume scaled to  $V_{M}$ 

#### HPLC system compatible

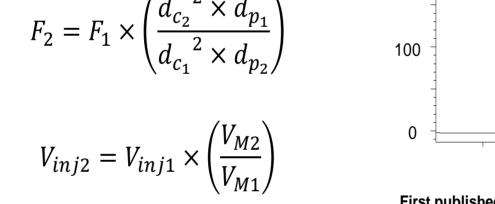


|                  |                                                      | and $d_p = particle size$ )                    |  |
|------------------|------------------------------------------------------|------------------------------------------------|--|
|                  |                                                      | - Additional increase in flow allowed provided |  |
|                  |                                                      | column efficiency does not drop below 20%.     |  |
|                  |                                                      | - Or, flow rate may change ±50%                |  |
|                  |                                                      | Gradient:                                      |  |
|                  |                                                      | - No changes                                   |  |
| Injection volume | Isocratic & gradient:                                | Isocratic & gradient: Any change as long as    |  |
|                  | - Any reduction                                      | peak repeatability is satisfactory             |  |
| Temperature      | Isocratic & gradient:                                | Isocratic & gradient:                          |  |
|                  | <ul> <li>±10°C when temperature is listed</li> </ul> | ±10°C when temperature is listed               |  |
| Detection        | Isocratic & gradient:                                | Isocratic & gradient:                          |  |
| wavelength       | - No change permitted. ±3 nm between                 | No change permitted. ±3 nm between             |  |
|                  | detectors                                            | detectors                                      |  |

A. P. McKeown, Chromatography Today (2015) 32-36

nited States Pharmacopoeia General Chapter <621> "Chromatography" First Supplement to USP 37-NF 32 (United States Pharmacopoeial Convention, Rockville, MD, USA).

### 6. Exploring L/d<sub>p</sub>: Estradiol


- > For isocratic methods, reducing column dimensions whilst maintaining column length (L) to particle size (d<sub>p</sub>) ratio results in similar performance
- USP <621> now permits  $L/d_p$  -25% to +50%

#### E.g. for 10 $\mu$ m 300 x 3.9 mm (= 30,000)

| Column Length (mm) |     |        |        |        |        |                 |         |        |
|--------------------|-----|--------|--------|--------|--------|-----------------|---------|--------|
|                    |     | 50     | 75     | 100    | 125    | 150             | 250     | 300    |
|                    | 1.7 | 29,412 | 44,118 | 58,824 |        |                 |         |        |
|                    | 1.8 | 27,778 | 41,667 | 55,556 |        |                 |         |        |
| (มาป               | 1.9 | 26,316 | 39,474 | 52,632 |        |                 |         |        |
| () e               | 2   | 25,000 | 37,500 | 50,000 | 62,500 | 75,000          |         |        |
| Particle Size      | 2.5 | 20,000 | 30,000 | 40,000 | 50,000 | 60,000          | 100,000 |        |
| ticle              | 2.6 | 19,231 | 28,846 | 38,462 | 48,077 | 57,692          | 96,154  |        |
| Jarl               | 2.7 | 18,519 | 27,778 | 37,037 | 46,296 | 55 <i>,</i> 556 | 92,593  |        |
|                    | 3   | 16,667 | 25,000 | 33,333 | 41,667 | 50,000          | 83,333  |        |
|                    | 5   | 10,000 | 15,000 | 20,000 | 25,000 | 30,000          | 50,000  |        |
|                    | 10  | 5,000  | 7,500  | 10,000 | 12,500 | 15,000          | 25,000  | 30,000 |



Scaling injection volume: Injection volume is scaled to new column volume  $(V_M)$ 



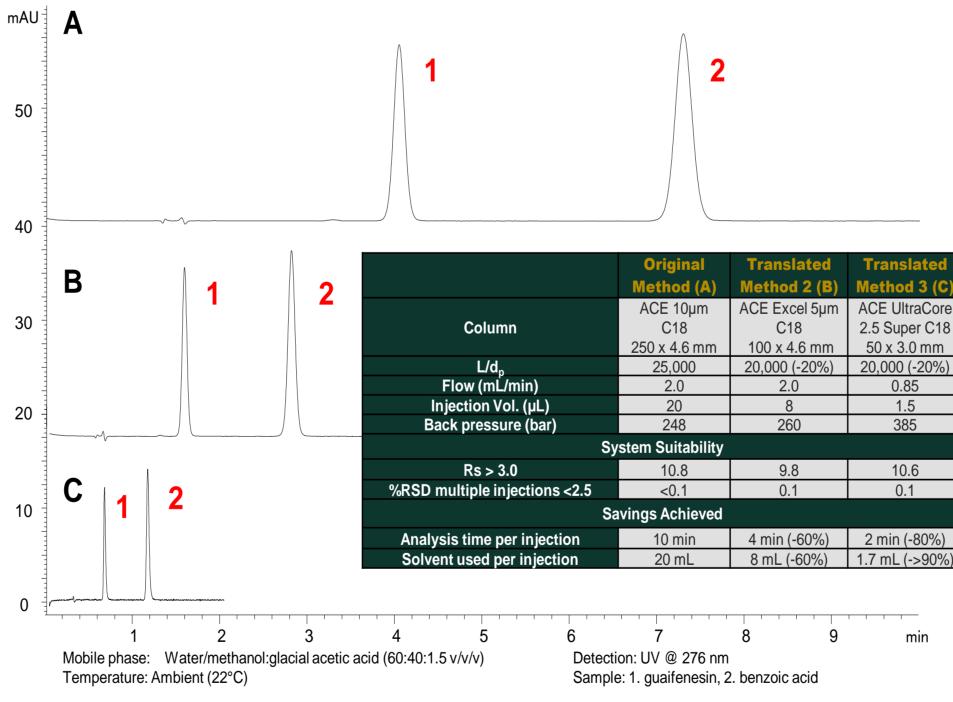
 $F_2 = F_1 \times \left(\frac{d_{c_2}^2}{d_{c_1}^2}\right)$ 

 $\left(d_{c_2}^2 \times d_{p_1}\right)$ 

#### **7. Estradiol Optimisation: Fully Porous or Solid Core**

|                 | Solid core and fully porous                      |                               | Original<br>Method (A)           | Translated<br>Method 1 (B)                                                                | Translated<br>Method 2 (C)           |  |
|-----------------|--------------------------------------------------|-------------------------------|----------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------|--|
|                 | options                                          | Column                        | ACE 10 μm<br>C18<br>300 x 3.9 mm | ACE UltraCore<br>2.5µmSuperC18<br>100 x 4.6 mm                                            | ACE Excel 2 μm<br>C18<br>50 x 3.0 mm |  |
|                 | Compatible with standard                         | L/d <sub>p</sub>              | 30,000                           | 40,000<br>(+33.3%)                                                                        | 25,000<br>(-16.7%)                   |  |
|                 | HPLC instrumentation (400                        | Flow (mL/min)                 | 1.0                              | 1.39                                                                                      | 0.59                                 |  |
|                 | l l                                              | Injection Vol. (µL)           | 25                               | 10.1                                                                                      | 2.5                                  |  |
|                 | bar system pressure)                             | Back pressure (bar)           | 79                               | 145                                                                                       | 222                                  |  |
|                 |                                                  |                               | System Suitabil                  | lity                                                                                      |                                      |  |
|                 |                                                  | Rs between B and C > 2.0      | 4.8                              | 5.1                                                                                       | 4.0                                  |  |
|                 |                                                  | %RSD multiple injections <2.0 | 0.1                              | <0.1                                                                                      | 0.2                                  |  |
| mAU             |                                                  | Savings Achieved              |                                  |                                                                                           |                                      |  |
| <u> </u>        | A ACE 10μm C18<br>300 x 3.9mm                    | Analysis time per injection   | 10 min                           | 3.3min<br>(67% reduction)                                                                 | 1.7min<br>(83% reduction)            |  |
| 600             |                                                  | Solvent used per injection    | 10 mL                            | 4.6mL (-54%)                                                                              | 1.0mL (-90%)                         |  |
| 500<br>400      |                                                  |                               |                                  |                                                                                           |                                      |  |
| 300<br>200      | B<br>ACE UltraCore 2.5μm SuperC18<br>100 x 4.6mm |                               |                                  | <ul> <li>Reduction in analysis<br/>time up to 83%</li> <li>Solvent consumption</li> </ul> |                                      |  |
| 100             | C ACE Excel 2μm C<br>50 x 3mm                    | 18                            | reduced up to 90%                |                                                                                           |                                      |  |
| <b>Fired</b> is | ubliched in Chromatography Today, Volume 9, Issu | 6 7 8 9 min                   |                                  |                                                                                           |                                      |  |

First published in Chromatography Today, Volume 8, Issue 1, February/March 2015


#### **10. UHPLC Example: Hydrocortisone**

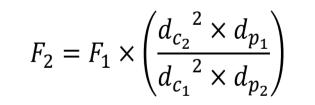
info@ace-hplc.com

Translate method from 5  $\mu$ m L1, 150 x 4.6 mm to 1.7  $\mu$ m L1, 50 x 3.0 mm

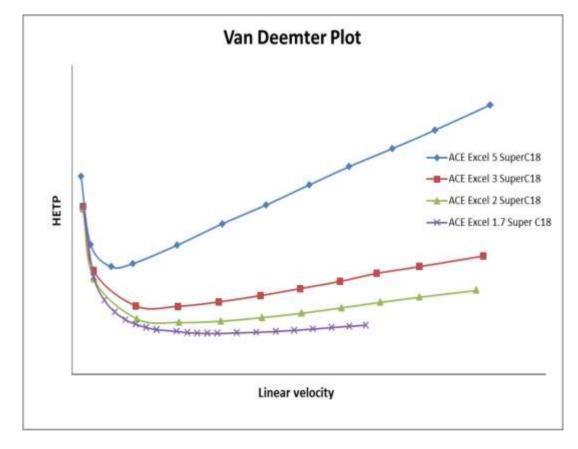
#### 8. Example 2: Guaifenesin Tablets Assay

When excess resolution is obtained,  $L/d_p$  can be reduced (allowable change)



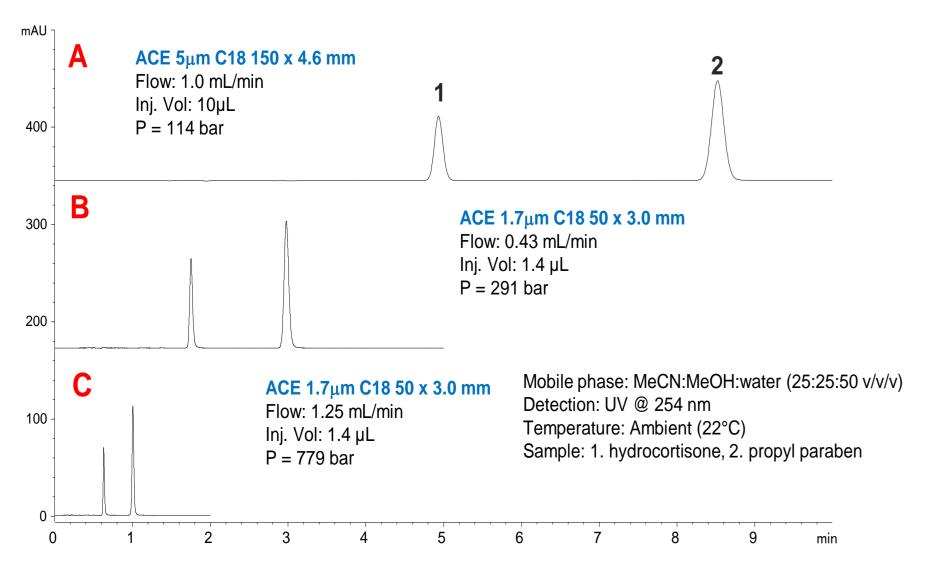

First published in Chromatography Today, Volume 8, Issue 1, February/March 2015

#### **11. UHPLC Example – Hydrocortisone assay**


Various L/d<sub>p</sub> options (and column formats) are available within the range -25% to +50% for use with HPLC and UHPLC instruments (highlighted green).

#### 9. L/d<sub>p</sub> and Flow Adjustment: UHPLC

USP <621> also allows translation of the flow rate to a higher linear velocity to take advantage of high efficiencies achievable with small particles.




i.e. allows chromatographer to fully exploit sub 2 micron particles and operate under UHPLC conditions



#### **12. Summary and Conclusions**

- Approach 1: scale flow to maintain constant linear velocity (0.43 mL/min)
- Approach 2: scale flow to reduced particle size (1.25 mL/min)



|                               | Original Method Translated Method 1<br>(A) (B)              |                                     | Translated Method 2<br>(C)          |  |  |  |
|-------------------------------|-------------------------------------------------------------|-------------------------------------|-------------------------------------|--|--|--|
| Column                        | ACE 5 µm C18<br>150 x 4.6 mm                                | ACE Excel 1.7 μm C18<br>50 x 3.0 mm | ACE Excel 1.7 μm C18<br>50 x 3.0 mm |  |  |  |
| L/d <sub>p</sub>              | 30,000                                                      | 29,412                              | 29,412                              |  |  |  |
| Flow (mL/min)                 | 1.0                                                         | 0.43                                | 1.25                                |  |  |  |
| Injection Vol. (µL)           | l. (μL) 10 1.4 1.4                                          |                                     | 1.4                                 |  |  |  |
| Back pressure (bar)           | 114                                                         | 293                                 | 779                                 |  |  |  |
| System Suitability            |                                                             |                                     |                                     |  |  |  |
| Rs > 9.0                      | Rs > 9.0 14.1 13.4 10.1                                     |                                     |                                     |  |  |  |
| N >3,000 for hydrocortisone   | 9,167 9,887 6,441                                           |                                     | 6,441                               |  |  |  |
| Tailing factor <1.2           | ctor <1.2 ✓ ✓ ✓                                             |                                     | $\checkmark$                        |  |  |  |
| %RSD multiple injections <2.0 | %RSD multiple injections <2.0 0.1 <0.1                      |                                     | <0.1                                |  |  |  |
| Savings Achieved              |                                                             |                                     |                                     |  |  |  |
| Analysis time per injection   | 10 min                                                      | 3.3 min (-66%)                      | 1.2 (-88%)                          |  |  |  |
| Solvent used per injection    | olvent used per injection 10 mL 1.4 mL (-86%) 1.5 mL (-85%) |                                     | 1.5 mL (-85%)                       |  |  |  |

- Alpha decreases by ~8%...possibly due to pressure effects
- 66% reduction in run time and 86% reduction in solvent use when scaling flow to maintain constant linear velocity.
- 88% reduction in run time and 85% reduction in solvent use when scaling flow to reduced particle size.

- The changes for isocratic methods in the new USP <621> provide considerable flexibility to the chromatographer. Reading the full text is highly recommended for detailed explanations.
- Use of small particles and solid core technology is now accommodated, allowing significant increases in productivity and reduced cost per analysis.
- This work successfully demonstrates how the L/d<sub>p</sub> approach can be applied to take advantage of the latest column technology using both HPLC and UHPLC.
- 80% reduction in run time and 72% reduction in solvent use for estradiol on an HPLC system.
- 80% reduction in run time and >90% reduction in solvent use for guaifenesin on an optimised HPLC system.
- 88% reduction in run time and 85% reduction in solvent use for hydrocortisone on a UHPLC system.

ACE® is a registered trademark of Advanced Chromatography Technologies Limited. ACE UltraCore™ and EBT™ are trademark of Advanced Chromatography Technologies Limited.

www.ace-hplc.com