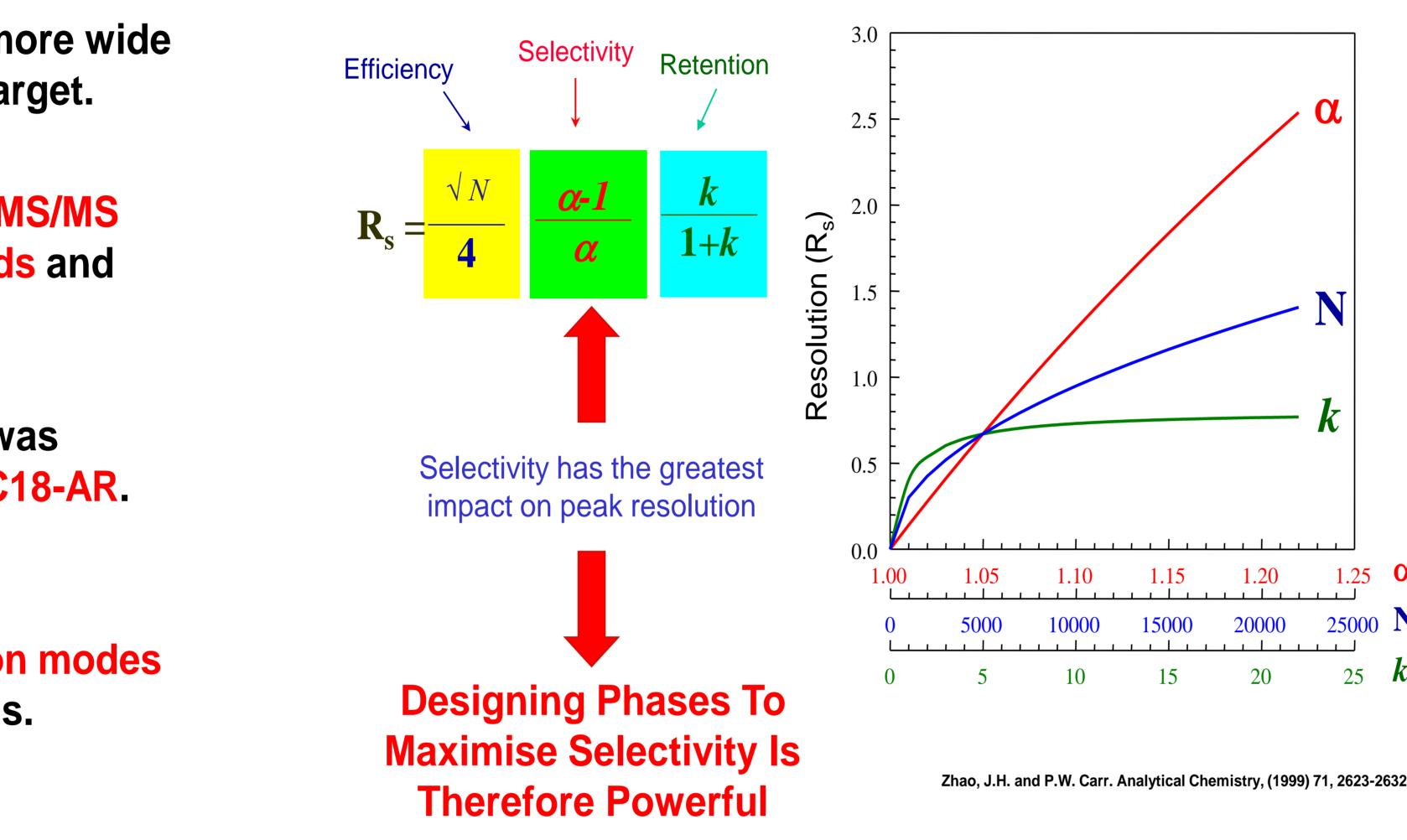


1. BACKGROUND

- The use of synthetic cannabinoids is becoming more wide spread and so are an important drug screening target.
- This work describes extraction and low level LC-MS/MS quantification of a range of synthetic cannabinoids and metabolites from oral fluid.
- Analysis of the extracted and enriched analytes was performed using a novel stationary phase: ACE C18-AR.
- The novel phase has been designed to maximise selectivity and separation with multiple interaction modes that include hydrophobicity and pi-pi mechanisms.

4. ORAL FLUID EXTRACTION & INSTRUMENT CONDITIONS


Format:	ISOLUTE [®] SLE+ 400 μ L Supported Liquid Extraction Plate, part number 820-04 ISOLUTE [®] SLE+ 400 μ L Sample Volume Columns, part number 820-0055-BG
Oral Fluid Hydrolysis: (optional)	Add β -glucuronidase (5000 units/mL) to patient oral fluid, fortified calibration s and/or QC standards (1 mL), in an appropriate container. Add ammonium acets pH 5, 1 mL). Spike the solution with internal standard. Incubate sample as per instructions.
Sample Pre-treatment:	Mix oral fluid sample (neat or buffered, 200 μ L) with ammonium acetate (100 m
Sample Processing:	Load pre-treated oral fluid sample (400 μ L) onto the ISOLUTE SLE+ 96-well pla Apply a short pulse of positive pressure and allow samples to sit for 5 minutes
Analyte Elution:	Apply ethyl acetate (2 x 700 μ L). Apply short pulses of pressure and collect elu
Post Extraction:	Evaporate to dryness and reconstitute sample in mobile phase (500 μ L).
MS Conditions:	Applied Biosystems/MDS Sciex 4000 Q-Trap triple quadrupole mass spectrom Biosystems, Foster City, CA.) equipped with a Turbo lonspray® interface (in po for mass analysis. Ion source temperature = 500C.
HPLC Instrument: Column: Mobile Phase A: Mobile Phase B: Isocratic Flow: Injection Volume: Temperature:	Agilent 1200 Series HPLC / UHPLC. ACE Excel 2 C18-AR, 2.1 x 100 mm i.d. 0.1% Formic Acid in Water. 0.1% Formic Acid in Methanol. 15% A: 85% B at 300 μL/min; 9 minute run time. 10 μL. Ambient.

All trademarks are recognised. Extraction and MS data reproduced with permission of Dr Victor Vandell, Biotage[®], Charlotte, NC, USA. See Biotage Application note AN791 for further details.

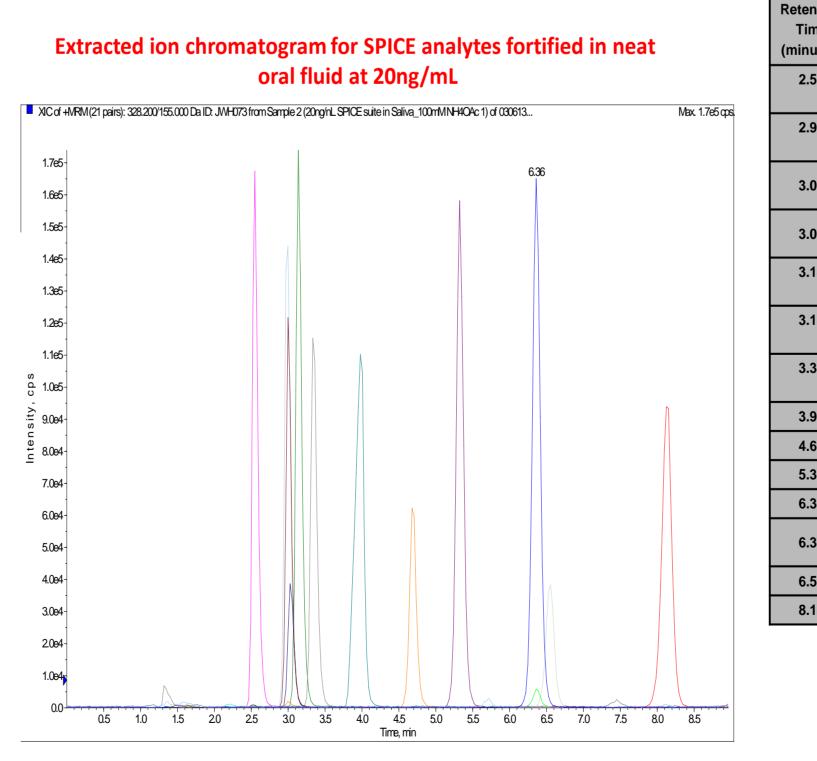
info@ace-hplc.com

Low Level Determination Of Synthetic Cannabinoids (SPICE) And Metabolites From Oral Fluid Using A Novel C18-Based Stationary Phase By UHPLC-MS/MS Alan P McKeown¹, Carl Zimmerman² ¹Advanced Chromatography Technologies Ltd, 1 Berry Street, Aberdeen, Scotland, AB25 1HF UK ²MACMOD Analytical Inc., 103 Commons Court, PO Box 587, Chadds Ford, PA 19317 USA

2. RESOLUTION, SELECTIVITY, EFFICIENCY & RETENTION

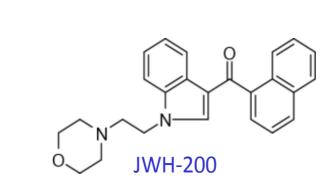
0400-PO1

standards etate (100 mM er enzyme

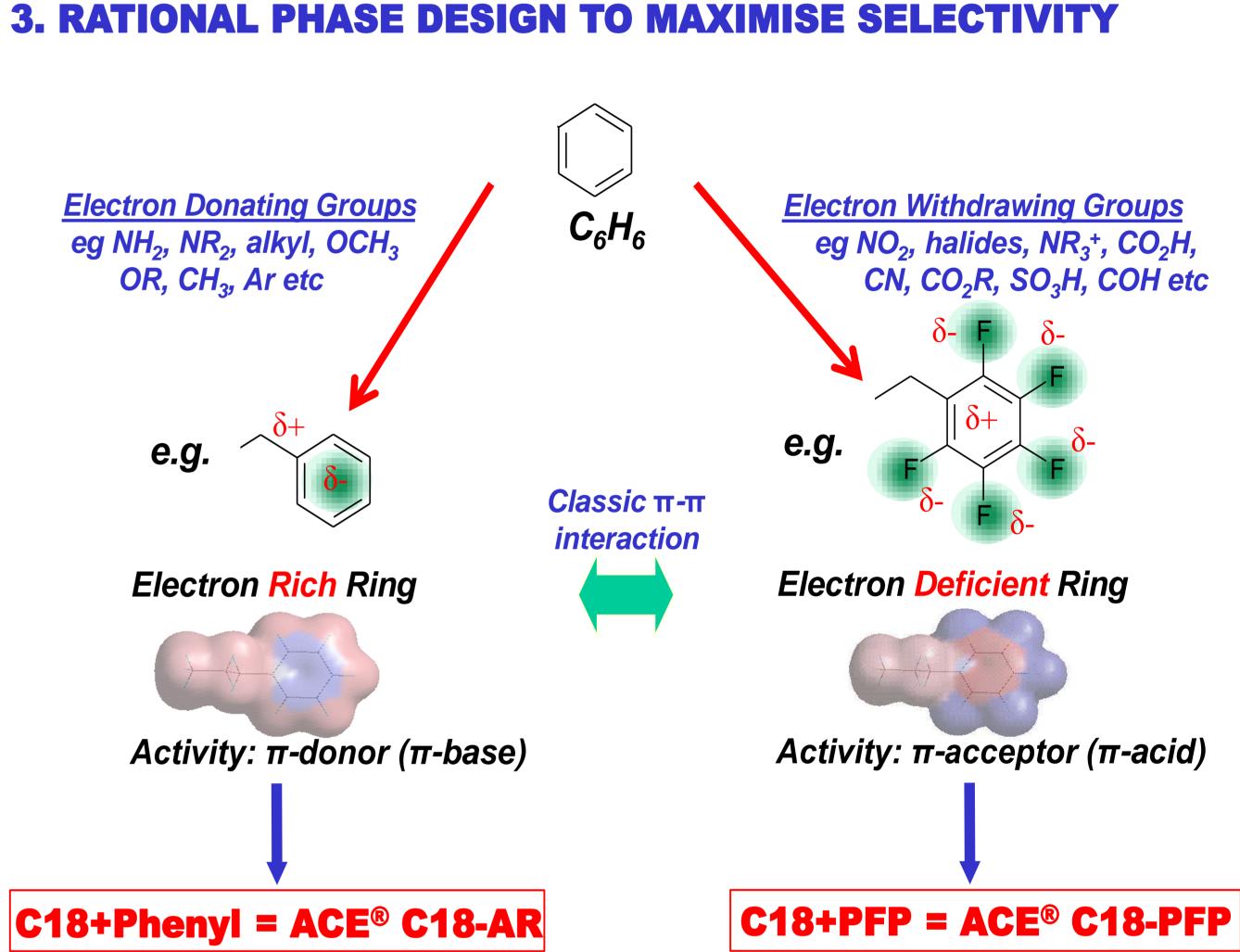

mM, pH 5, 200 μL).

late or column

luent


meter (Applied oositive mode)

5. SYNTHETIC CANNABINOIDS: LOW LEVEL LC-MS/MS ANALYSIS


UR-144

ntion ne utes)	Analyte	MRM Transition	Declustering Potential (DP)	Collision Energy (CE)	Cell Exit Potential (CXP)
55	JWH-250 N-(5- hydroxypentyl)	352>120.9	40	30	16
99	JWH-073 N-(3- hydroxybutyl)	344>155	40	30	16
00	UR-144 5- Hydroxy-pentyl	328.5>125	30	35	16
03	UR-144 Pentanoic Acid	342.5>125	30	35	16
14	d5-JWH-018N- (4-hydroxypentyl	363.5> 155	40	35	16
14	JWH-018 N- (4- hydroxypentyl	358> 155	40	30	16
34	JWH-018 5- pentanoic acid	372>155	40	30	16
98	JWH-200	385>155	40	30	16
69	XLR-11	330>125	30	35	16
32	JWH-250	336>121	40	30	16
36	JWH-073	328>155	40	30	16
37	UR-144 5-Chloro- pentyl	346.9>125	30	35	16
55	UR-144	312.5>125	30	35	16
14	JWH-018	342>155	40	30	16

- %RSDs <10.

ACE[®] is a registered trademark of Advanced Chromatography Technologies Limited. Excel[™] is a trademark of Advanced Chromatography Technologies Limited Advanced Chromatography Technologies Limited acknowledges the registered and unregistered trademarks of Biotage® and has no affiliation with the company

6. SUMMARY AND CONCLUSIONS

Synthetic cannabinoid / SPICE drug screening protocols are becoming increasingly important in law enforcement.

Low level quantification by UHPLC-MS/MS is achievable and an important tool for rapid screening.

An extraction protocol using ISOLUTE[®] SLE+ and a separation method using the novel ACE[®] C18-AR were developed to enable the low level detection of a range of synthetic cannabinoids and their metabolites.

Typical recoveries for the analytes and their metabolites at **1 ng/mL** extracted from oral fluid ranged from **65-110%**,

www.ace-hplc.com