High-Speed Separation Inertsil ODS-3 2um

Base Silica Physical Properties and Chemical Modification

Base Silica:	High Purity Silica Gel 99.999%		
Surface Area:	450 m²/g		
Pore Size:	100A		
Pore Volume:	1.05 mL/g		
Bonded Phase:	Octadecyl Groups		
Carbon Loading:	15%		
Endcapped:	Yes		
Column Sizes:	50 x 2.1 mml.D.		
	50 × 3.0 mml.D.		
Maximum Operating Pressure:	50 MPa		
Guaranteed Theoretical Plates:	160.000/m (GLS Standard Column Performance Test)		

ISO14001: Save Energy and Resources!!! Reduce Amount of Eluent with Smaller ID Inertsil Columns!!!

Features of Inertsil ODS-3 2um

- Advanced classification technologies for sizing silica gels realized an ideal balance between theoretical plate number and column back pressure enabling ultrafast throughput analysis in the existing multi-purpose HPLC system.
- Fine particles are thoroughly eliminated and proper mesh size is employed, which result in less column clogging problems.
- Customers who are currently using Inertsil ODS-3 5um, 4um or 3um in their analyses can now simply readily achieve High- Speed Separation without changing the analytical conditions.
- A newly-developed column joint is used to minimize the dead-volume, which is an ideal design for ultrafast throughput analyses, resulting in high/sharp peak shapes for those fast eluted samples.
- * Maximal performance can be obtained at the following flow rate:

2.1mml.D.:	From 0.4 to 0.6 mL/min
3.0mml.D.:	From 0.8 to1.2 mL/min

Van Deemter Plot of HETP vs Flow Rate

Column : 50 × 2.1mml.D., Eluent : CH₃CN/H₂O, Temp. : 40C

Pressure vs Flow Rate

Column : 50 × 2.1mml.D., Eluent : CH₃CN/H₂O, Temp. : 40C

Durability Test - Pressure Durability -

Durability Test - Pressure Durability -

- The analytical condition was purposely set to have the maximum pressure reach at 50MPa.
- The test was repeatedly conducted and observed no variation in retention and peak shape.
- Instead of an isocratic, a gradient condition was employed since it generates more pressure fluctuation resulting in more rigorous durability test.

Comparison Chart of Sub-micron columns

Column Size:50 × 2.1 mml.DMobile Phase:CH3CN/H2O=50/50

Brand Name	Particle Size (um)	Basic Performance at 0.6 mL/min			
		Ret. Time	Theoretical Plates of Numbers	Pressure	*N/Mpa
Inertsil ODS-3	2	1.12 min	8,320	29.3 Мра	284
Acquity UPLC (Waters)	< 2	0.69 min	9,500	42.0 Мра	226
XDB-C18 (Agilent)	< 2	0.81 min	8,961	39.3 Мра	228
UltraHT ProC18 (YMC)	≥ 2	0.90 min	6,859	26.3 Мра	261
XR-ODS (Shimadzu)	≥ 2	0.87 min	4,411	22.2 Mpa	199

* N / Mpa: - Theoretical Plate of Number / 1MPa

- Dividing the Maximum Theoretical Plate by the Pressure.

- Higher the value is, higher the separating efficiency per unit pressure.

Inertsil ODS-3 2um Instruction for Use

- When using an ultra high pressure specification instrument, please be careful with the fitting type.
- To maximize column life, operate at pressures within 50MPa (approx. 7,200psi).
- To maximize the performance of the column, extreme care should be taken on the internal diameter of piping and detector cell.
- The below mentioned Seal Tight Fitting (Upchurch) can also be tightened by hand, however, leakage may be observed due to tolerance of an outer diameter of the piping or worn piping.
 Use stainless steel male nut and ferrule when analyzing precious samples.
- Please be careful with the setting of response speed of detector and retrieving interval on the data processor in a high throughput analysis.

Description	Cat.No.
Seal Tight Fitting, Short Nut, 10PCS/PACK, P/N F-195X (Upchurch)	*6010-72304
Seal Tight Fitting, Long Nut, 10PCS/PACK, P/N F-196X (Upchurch)	*6010-72305

* For a quotation, please contact our local representative

- •PEEK (2 piece fittings ; Seal Tight Ferrules (Comes with F-192X)
- O.D. 1/16" Tube (Nut Standard: No.10-32UNF)
- Resistance to Pressure

When using Stainless Steel Piping: When using PEEK Piping: 9,000psi (Approx. 62 Mpa) 7,000psi (Approx. 48 Mpa)

